量化化学评估所需的预测化学分配比的不确定度。

IF 3.9 3区 环境科学与生态学 Q1 CHEMISTRY, ANALYTICAL
Trevor N Brown, Alessandro Sangion, Li Li, Jon A Arnot
{"title":"量化化学评估所需的预测化学分配比的不确定度。","authors":"Trevor N Brown, Alessandro Sangion, Li Li, Jon A Arnot","doi":"10.1039/d5em00357a","DOIUrl":null,"url":null,"abstract":"<p><p>Three Quantitative Structure Property Relationship (QSPR) software packages, IFSQSAR, OPERA, and EPI Suite are compared and assessed for prediction accuracy, applicability domain (AD) and uncertainty of the predictions. A database of experimental physical-chemical (PC) properties is compiled, merged, and filtered, and the QSPRs are assessed with datasets of octanol-water (<i>K</i><sub>OW</sub>), octanol-air (<i>K</i><sub>OA</sub>), and air-water (<i>K</i><sub>AW</sub>) partition ratios. Upper and lower limits on PC property predictions are proposed based on theory, data, and applications of the properties in hazard screening and risk assessment. Validations of the uncertainty metrics of the QSPR packages are done for the PC properties using experimental data external to all training datasets. The IFSQSAR 95% prediction interval (PI95) calculated from root mean squared error of prediction (RMSEP) captures 90% of the external data, while OPERA and EPI Suite require a factor increase of at least 4 and 2 respectively for their PI95 to capture a similar 90% of the external experimental data. The assessment of QSPR consensus predictions identified future research and experimental testing to improve the predictive models for data-poor chemicals such as polyfluorinated or per-fluorinated alkyl substances (PFAS), ionizable chemicals, and chemicals with complex and multifunctional structures.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantifying uncertainty in predicted chemical partition ratios required for chemical assessments.\",\"authors\":\"Trevor N Brown, Alessandro Sangion, Li Li, Jon A Arnot\",\"doi\":\"10.1039/d5em00357a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Three Quantitative Structure Property Relationship (QSPR) software packages, IFSQSAR, OPERA, and EPI Suite are compared and assessed for prediction accuracy, applicability domain (AD) and uncertainty of the predictions. A database of experimental physical-chemical (PC) properties is compiled, merged, and filtered, and the QSPRs are assessed with datasets of octanol-water (<i>K</i><sub>OW</sub>), octanol-air (<i>K</i><sub>OA</sub>), and air-water (<i>K</i><sub>AW</sub>) partition ratios. Upper and lower limits on PC property predictions are proposed based on theory, data, and applications of the properties in hazard screening and risk assessment. Validations of the uncertainty metrics of the QSPR packages are done for the PC properties using experimental data external to all training datasets. The IFSQSAR 95% prediction interval (PI95) calculated from root mean squared error of prediction (RMSEP) captures 90% of the external data, while OPERA and EPI Suite require a factor increase of at least 4 and 2 respectively for their PI95 to capture a similar 90% of the external experimental data. The assessment of QSPR consensus predictions identified future research and experimental testing to improve the predictive models for data-poor chemicals such as polyfluorinated or per-fluorinated alkyl substances (PFAS), ionizable chemicals, and chemicals with complex and multifunctional structures.</p>\",\"PeriodicalId\":74,\"journal\":{\"name\":\"Environmental Science: Processes & Impacts\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Science: Processes & Impacts\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1039/d5em00357a\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Processes & Impacts","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1039/d5em00357a","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

对IFSQSAR、OPERA和EPI Suite三种QSPR(定量结构属性关系)软件包的预测精度、预测的适用域(AD)和不确定性进行了比较和评估。编制、合并和过滤实验物理化学(PC)特性数据库,并使用辛醇-水(KOW)、辛醇-空气(KOA)和空气-水(KAW)分配比数据集对QSPRs进行评估。根据理论、数据以及在灾害筛选和风险评估中的应用,提出了PC属性预测的上下限。QSPR包的不确定度度量的验证是使用所有训练数据集外部的实验数据对PC属性进行的。根据预测均方根误差(RMSEP)计算的IFSQSAR 95%预测区间(PI95)捕获了90%的外部数据,而OPERA和EPI Suite的PI95分别需要增加至少4和2个因子才能捕获相似的90%的外部实验数据。对QSPR共识预测的评估确定了未来的研究和实验测试,以改进数据贫乏化学品的预测模型,如多氟化或全氟烷基物质、电离化学品以及具有复杂和多功能结构的化学品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantifying uncertainty in predicted chemical partition ratios required for chemical assessments.

Three Quantitative Structure Property Relationship (QSPR) software packages, IFSQSAR, OPERA, and EPI Suite are compared and assessed for prediction accuracy, applicability domain (AD) and uncertainty of the predictions. A database of experimental physical-chemical (PC) properties is compiled, merged, and filtered, and the QSPRs are assessed with datasets of octanol-water (KOW), octanol-air (KOA), and air-water (KAW) partition ratios. Upper and lower limits on PC property predictions are proposed based on theory, data, and applications of the properties in hazard screening and risk assessment. Validations of the uncertainty metrics of the QSPR packages are done for the PC properties using experimental data external to all training datasets. The IFSQSAR 95% prediction interval (PI95) calculated from root mean squared error of prediction (RMSEP) captures 90% of the external data, while OPERA and EPI Suite require a factor increase of at least 4 and 2 respectively for their PI95 to capture a similar 90% of the external experimental data. The assessment of QSPR consensus predictions identified future research and experimental testing to improve the predictive models for data-poor chemicals such as polyfluorinated or per-fluorinated alkyl substances (PFAS), ionizable chemicals, and chemicals with complex and multifunctional structures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Science: Processes & Impacts
Environmental Science: Processes & Impacts CHEMISTRY, ANALYTICAL-ENVIRONMENTAL SCIENCES
CiteScore
9.50
自引率
3.60%
发文量
202
审稿时长
1 months
期刊介绍: Environmental Science: Processes & Impacts publishes high quality papers in all areas of the environmental chemical sciences, including chemistry of the air, water, soil and sediment. We welcome studies on the environmental fate and effects of anthropogenic and naturally occurring contaminants, both chemical and microbiological, as well as related natural element cycling processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信