用拉曼光谱揭示二维铌酸钾离子输运动力学

IF 6.4 3区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xiaorui Jin, Yeming Zhai, Xinyue Chang, Weijun He, Xiaofen Liu, Lan Lan, Ning Zhang, Yongan Yang, Chuancheng Jia, Meiling Wu, Kai-Ge Zhou
{"title":"用拉曼光谱揭示二维铌酸钾离子输运动力学","authors":"Xiaorui Jin,&nbsp;Yeming Zhai,&nbsp;Xinyue Chang,&nbsp;Weijun He,&nbsp;Xiaofen Liu,&nbsp;Lan Lan,&nbsp;Ning Zhang,&nbsp;Yongan Yang,&nbsp;Chuancheng Jia,&nbsp;Meiling Wu,&nbsp;Kai-Ge Zhou","doi":"10.1002/admt.202500046","DOIUrl":null,"url":null,"abstract":"<p>The development of advanced solid-state electrolytes is crucial for improving the performance of energy storage devices. Despite various research focusing on ionic conductivity and mobility, there is a critical gap in understanding the kinetic mechanisms of ion transport, especially at the nanoscale. This study analyzes the ion transport kinetics in 2D layered potassium niobate (K<sub>4</sub>Nb<sub>6</sub>O<sub>17</sub>), a promising solid-state electrolyte, using Raman spectroscopy. A correlation between interlayer Nb─O bonds in two types of channels and Raman peaks is established. By monitoring changes in Nb─O bond vibrations within the nanochannels of K<sub>4</sub>Nb<sub>6</sub>O<sub>17</sub>, it is revealed that alkali ions such as Na<sup>+</sup> and Li<sup>+</sup> follow pseudo-first-order transport kinetics. This kinetics model identifies distinct differences in the transport rates and activation energies between two types of nanochannels. Na⁺ and Li⁺ exhibit faster transport in type I channels due to lower energy barriers compared to type II channels. Additionally, the spatial distribution analysis reveals anisotropic ion transport in K<sub>4</sub>Nb<sub>6</sub>O<sub>17</sub>, facilitating the tracking of ion locations and transport pathways within the material. This work introduces a kinetic model for real-time tracking of ion transport quantitatively in 2D materials, enhancing the understanding of ion transport kinetics in solid-state electrolytes.</p>","PeriodicalId":7292,"journal":{"name":"Advanced Materials Technologies","volume":"10 19","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling the Kinetics of Ion Transport in 2D Potassium Niobate by Raman Spectroscopy\",\"authors\":\"Xiaorui Jin,&nbsp;Yeming Zhai,&nbsp;Xinyue Chang,&nbsp;Weijun He,&nbsp;Xiaofen Liu,&nbsp;Lan Lan,&nbsp;Ning Zhang,&nbsp;Yongan Yang,&nbsp;Chuancheng Jia,&nbsp;Meiling Wu,&nbsp;Kai-Ge Zhou\",\"doi\":\"10.1002/admt.202500046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The development of advanced solid-state electrolytes is crucial for improving the performance of energy storage devices. Despite various research focusing on ionic conductivity and mobility, there is a critical gap in understanding the kinetic mechanisms of ion transport, especially at the nanoscale. This study analyzes the ion transport kinetics in 2D layered potassium niobate (K<sub>4</sub>Nb<sub>6</sub>O<sub>17</sub>), a promising solid-state electrolyte, using Raman spectroscopy. A correlation between interlayer Nb─O bonds in two types of channels and Raman peaks is established. By monitoring changes in Nb─O bond vibrations within the nanochannels of K<sub>4</sub>Nb<sub>6</sub>O<sub>17</sub>, it is revealed that alkali ions such as Na<sup>+</sup> and Li<sup>+</sup> follow pseudo-first-order transport kinetics. This kinetics model identifies distinct differences in the transport rates and activation energies between two types of nanochannels. Na⁺ and Li⁺ exhibit faster transport in type I channels due to lower energy barriers compared to type II channels. Additionally, the spatial distribution analysis reveals anisotropic ion transport in K<sub>4</sub>Nb<sub>6</sub>O<sub>17</sub>, facilitating the tracking of ion locations and transport pathways within the material. This work introduces a kinetic model for real-time tracking of ion transport quantitatively in 2D materials, enhancing the understanding of ion transport kinetics in solid-state electrolytes.</p>\",\"PeriodicalId\":7292,\"journal\":{\"name\":\"Advanced Materials Technologies\",\"volume\":\"10 19\",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials Technologies\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/admt.202500046\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Technologies","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/admt.202500046","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

先进固态电解质的开发对于提高储能装置的性能至关重要。尽管各种各样的研究都集中在离子的电导率和迁移率上,但在理解离子传输的动力学机制,特别是在纳米尺度上,还存在一个关键的空白。本研究利用拉曼光谱分析了二维层状铌酸钾(K4Nb6O17)的离子传输动力学。建立了两种通道层间Nb─O键与拉曼峰之间的相关性。通过监测K4Nb6O17纳米通道内Nb─O键振动的变化,揭示了Na+和Li+等碱离子遵循准一级传输动力学。该动力学模型确定了两种纳米通道之间的运输速率和活化能的明显差异。与II型通道相比,Na +和Li +在I型通道中表现出更快的传输速度,因为能量垒更低。此外,空间分布分析揭示了K4Nb6O17中离子输运的各向异性,便于跟踪离子在材料内的位置和输运途径。本工作引入了一种用于实时跟踪二维材料中离子输运的动力学模型,增强了对固态电解质中离子输运动力学的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Unveiling the Kinetics of Ion Transport in 2D Potassium Niobate by Raman Spectroscopy

Unveiling the Kinetics of Ion Transport in 2D Potassium Niobate by Raman Spectroscopy

The development of advanced solid-state electrolytes is crucial for improving the performance of energy storage devices. Despite various research focusing on ionic conductivity and mobility, there is a critical gap in understanding the kinetic mechanisms of ion transport, especially at the nanoscale. This study analyzes the ion transport kinetics in 2D layered potassium niobate (K4Nb6O17), a promising solid-state electrolyte, using Raman spectroscopy. A correlation between interlayer Nb─O bonds in two types of channels and Raman peaks is established. By monitoring changes in Nb─O bond vibrations within the nanochannels of K4Nb6O17, it is revealed that alkali ions such as Na+ and Li+ follow pseudo-first-order transport kinetics. This kinetics model identifies distinct differences in the transport rates and activation energies between two types of nanochannels. Na⁺ and Li⁺ exhibit faster transport in type I channels due to lower energy barriers compared to type II channels. Additionally, the spatial distribution analysis reveals anisotropic ion transport in K4Nb6O17, facilitating the tracking of ion locations and transport pathways within the material. This work introduces a kinetic model for real-time tracking of ion transport quantitatively in 2D materials, enhancing the understanding of ion transport kinetics in solid-state electrolytes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials Technologies
Advanced Materials Technologies Materials Science-General Materials Science
CiteScore
10.20
自引率
4.40%
发文量
566
期刊介绍: Advanced Materials Technologies Advanced Materials Technologies is the new home for all technology-related materials applications research, with particular focus on advanced device design, fabrication and integration, as well as new technologies based on novel materials. It bridges the gap between fundamental laboratory research and industry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信