Paula Pérez-Peinado, Jaime Dolado, Pedro L. Alcázar Ruano, Daniel Carrasco, Ruth Martínez-Casado, Valentina Bonino, Gema Martínez-Criado, Jani Jesenovec, John S. McCloy, Francisco Domínguez-Adame, Jorge Quereda, Emilio Nogales, Bianchi Méndez
{"title":"用x射线激发光学发光证明β- ga2o3 \\ \\左(\\text{Ga}\\右)_{2}\\左(\\text{O}\\右)_{3}$纳米膜的光学各向异性和极化效应","authors":"Paula Pérez-Peinado, Jaime Dolado, Pedro L. Alcázar Ruano, Daniel Carrasco, Ruth Martínez-Casado, Valentina Bonino, Gema Martínez-Criado, Jani Jesenovec, John S. McCloy, Francisco Domínguez-Adame, Jorge Quereda, Emilio Nogales, Bianchi Méndez","doi":"10.1002/adpr.202500043","DOIUrl":null,"url":null,"abstract":"<p>Monoclinic <i>β</i>-<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mtext>Ga</mtext>\n </mrow>\n <mn>2</mn>\n </msub>\n <msub>\n <mi>O</mi>\n <mn>3</mn>\n </msub>\n </mrow>\n <annotation>$\\left(\\text{Ga}\\right)_{2} \\left(\\text{O}\\right)_{3}$</annotation>\n </semantics></math> is a key representative material of the ultrawide-bandgap semiconductor family. The distinct atomic arrangement in <i>β</i>-<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mtext>Ga</mtext>\n </mrow>\n <mn>2</mn>\n </msub>\n <msub>\n <mi>O</mi>\n <mn>3</mn>\n </msub>\n </mrow>\n <annotation>$\\left(\\text{Ga}\\right)_{2} \\left(\\text{O}\\right)_{3}$</annotation>\n </semantics></math> introduces two coordination environments for Ga ions, resulting in pronounced anisotropy in its optical, electronic, and thermal properties. In this study, a synchrotron nanoprobe to investigate the anisotropic optical properties of well-oriented <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mn>100</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$\\left(\\right. 100 \\left.\\right)$</annotation>\n </semantics></math> <i>β</i>-<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mtext>Ga</mtext>\n </mrow>\n <mn>2</mn>\n </msub>\n <msub>\n <mi>O</mi>\n <mn>3</mn>\n </msub>\n </mrow>\n <annotation>$\\left(\\text{Ga}\\right)_{2} \\left(\\text{O}\\right)_{3}$</annotation>\n </semantics></math> nanomembranes with a thickness of <span></span><math>\n <semantics>\n <mrow>\n <mn>200</mn>\n </mrow>\n <annotation>$200$</annotation>\n </semantics></math> nm, produced through mechanical exfoliation, is employed. Polarization-resolved X-ray excited optical luminescence (XEOL) measurements reveal a strong ultraviolet (UV) emission band at <span></span><math>\n <semantics>\n <mrow>\n <mn>3.4</mn>\n </mrow>\n <annotation>$3.4$</annotation>\n </semantics></math> eV, which is strongly polarized along the <i>c</i>-axis. Additionally, XEOL data show blue (<span></span><math>\n <semantics>\n <mrow>\n <mn>2.9</mn>\n </mrow>\n <annotation>$2.9$</annotation>\n </semantics></math> eV) and deep-UV (<span></span><math>\n <semantics>\n <mrow>\n <mn>3.8</mn>\n </mrow>\n <annotation>$3.8$</annotation>\n </semantics></math> eV) emissions. Notably, the deep-UV band, rarely reported in conventional photoluminescence studies, is attributed to the presence of Ga vacancies, as supported by first-principles calculations. Polarization-dependent X-ray absorption near-edge structure (XANES) spectroscopy allows one to probe the distinct symmetries of the <i>b</i> and <i>c</i> crystallographic planes. Furthermore, by combining XANES and XEOL, this study investigates the site-specific contributions of Ga ions to the luminescence process. These findings highlight the potential of <i>β</i>-<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mtext>Ga</mtext>\n </mrow>\n <mn>2</mn>\n </msub>\n <msub>\n <mi>O</mi>\n <mn>3</mn>\n </msub>\n </mrow>\n <annotation>$\\left(\\text{Ga}\\right)_{2} \\left(\\text{O}\\right)_{3}$</annotation>\n </semantics></math> nanomembranes as a robust material platform for developing polarization-sensitive devices. The pronounced anisotropy of <i>β</i>-<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mtext>Ga</mtext>\n </mrow>\n <mn>2</mn>\n </msub>\n <msub>\n <mi>O</mi>\n <mn>3</mn>\n </msub>\n </mrow>\n <annotation>$\\left(\\text{Ga}\\right)_{2} \\left(\\text{O}\\right)_{3}$</annotation>\n </semantics></math> causes orientation-dependent optoelectronic properties, making it a highly promising candidate for a wide range of advanced applications.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"6 10","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202500043","citationCount":"0","resultStr":"{\"title\":\"Proving Optical Anisotropy and Polarization Effects in β-\\n \\n \\n \\n \\n Ga\\n \\n 2\\n \\n \\n O\\n 3\\n \\n \\n $\\\\left(\\\\text{Ga}\\\\right)_{2} \\\\left(\\\\text{O}\\\\right)_{3}$\\n Nanomembranes via X-Ray Excited Optical Luminescence\",\"authors\":\"Paula Pérez-Peinado, Jaime Dolado, Pedro L. Alcázar Ruano, Daniel Carrasco, Ruth Martínez-Casado, Valentina Bonino, Gema Martínez-Criado, Jani Jesenovec, John S. McCloy, Francisco Domínguez-Adame, Jorge Quereda, Emilio Nogales, Bianchi Méndez\",\"doi\":\"10.1002/adpr.202500043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Monoclinic <i>β</i>-<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mtext>Ga</mtext>\\n </mrow>\\n <mn>2</mn>\\n </msub>\\n <msub>\\n <mi>O</mi>\\n <mn>3</mn>\\n </msub>\\n </mrow>\\n <annotation>$\\\\left(\\\\text{Ga}\\\\right)_{2} \\\\left(\\\\text{O}\\\\right)_{3}$</annotation>\\n </semantics></math> is a key representative material of the ultrawide-bandgap semiconductor family. The distinct atomic arrangement in <i>β</i>-<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mtext>Ga</mtext>\\n </mrow>\\n <mn>2</mn>\\n </msub>\\n <msub>\\n <mi>O</mi>\\n <mn>3</mn>\\n </msub>\\n </mrow>\\n <annotation>$\\\\left(\\\\text{Ga}\\\\right)_{2} \\\\left(\\\\text{O}\\\\right)_{3}$</annotation>\\n </semantics></math> introduces two coordination environments for Ga ions, resulting in pronounced anisotropy in its optical, electronic, and thermal properties. In this study, a synchrotron nanoprobe to investigate the anisotropic optical properties of well-oriented <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mn>100</mn>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\left(\\\\right. 100 \\\\left.\\\\right)$</annotation>\\n </semantics></math> <i>β</i>-<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mtext>Ga</mtext>\\n </mrow>\\n <mn>2</mn>\\n </msub>\\n <msub>\\n <mi>O</mi>\\n <mn>3</mn>\\n </msub>\\n </mrow>\\n <annotation>$\\\\left(\\\\text{Ga}\\\\right)_{2} \\\\left(\\\\text{O}\\\\right)_{3}$</annotation>\\n </semantics></math> nanomembranes with a thickness of <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>200</mn>\\n </mrow>\\n <annotation>$200$</annotation>\\n </semantics></math> nm, produced through mechanical exfoliation, is employed. Polarization-resolved X-ray excited optical luminescence (XEOL) measurements reveal a strong ultraviolet (UV) emission band at <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>3.4</mn>\\n </mrow>\\n <annotation>$3.4$</annotation>\\n </semantics></math> eV, which is strongly polarized along the <i>c</i>-axis. Additionally, XEOL data show blue (<span></span><math>\\n <semantics>\\n <mrow>\\n <mn>2.9</mn>\\n </mrow>\\n <annotation>$2.9$</annotation>\\n </semantics></math> eV) and deep-UV (<span></span><math>\\n <semantics>\\n <mrow>\\n <mn>3.8</mn>\\n </mrow>\\n <annotation>$3.8$</annotation>\\n </semantics></math> eV) emissions. Notably, the deep-UV band, rarely reported in conventional photoluminescence studies, is attributed to the presence of Ga vacancies, as supported by first-principles calculations. Polarization-dependent X-ray absorption near-edge structure (XANES) spectroscopy allows one to probe the distinct symmetries of the <i>b</i> and <i>c</i> crystallographic planes. Furthermore, by combining XANES and XEOL, this study investigates the site-specific contributions of Ga ions to the luminescence process. These findings highlight the potential of <i>β</i>-<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mtext>Ga</mtext>\\n </mrow>\\n <mn>2</mn>\\n </msub>\\n <msub>\\n <mi>O</mi>\\n <mn>3</mn>\\n </msub>\\n </mrow>\\n <annotation>$\\\\left(\\\\text{Ga}\\\\right)_{2} \\\\left(\\\\text{O}\\\\right)_{3}$</annotation>\\n </semantics></math> nanomembranes as a robust material platform for developing polarization-sensitive devices. The pronounced anisotropy of <i>β</i>-<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mtext>Ga</mtext>\\n </mrow>\\n <mn>2</mn>\\n </msub>\\n <msub>\\n <mi>O</mi>\\n <mn>3</mn>\\n </msub>\\n </mrow>\\n <annotation>$\\\\left(\\\\text{Ga}\\\\right)_{2} \\\\left(\\\\text{O}\\\\right)_{3}$</annotation>\\n </semantics></math> causes orientation-dependent optoelectronic properties, making it a highly promising candidate for a wide range of advanced applications.</p>\",\"PeriodicalId\":7263,\"journal\":{\"name\":\"Advanced Photonics Research\",\"volume\":\"6 10\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202500043\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Photonics Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adpr.202500043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Photonics Research","FirstCategoryId":"1085","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adpr.202500043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
单斜斜β- Ga 2 O 3 $\左(\text{Ga}\右)_{2}\左(\text{O}\右)_{3}$是超宽带隙半导体家族的关键代表材料。β- Ga 2 O 3 $\左(\text{Ga}\右)_{2}\左(\text{O}\右)_{3}$中不同的原子排列引入了Ga离子的两种配位环境,导致其在光学、电子和热性能上具有明显的各向异性。在本研究中,利用同步加速器纳米探针研究了良好取向(100)$\left(\right)的各向异性光学特性。100年\离开了。\右)$ β- Ga 2 O 3 $\左(\text{Ga}\右)_{2}\左(\text{O}\右)_{3}$厚度为200的纳米膜$200$ nm,通过机械去角质生产。偏振分辨x射线激发光学发光(XEOL)测量显示,在3.4$ 3.4$ eV处有一个强紫外(UV)发射带,该波段沿c轴呈强偏振。此外,XEOL数据显示蓝色(2.9$ 2.9$ eV)和深紫外(3.8$ 3.8$ eV)辐射。值得注意的是,在传统的光致发光研究中很少报道的深紫外波段归因于Ga空位的存在,这得到了第一性原理计算的支持。偏振依赖的x射线吸收近边结构(XANES)光谱学允许人们探测b和c晶体平面的独特对称性。此外,通过结合XANES和XEOL,本研究探讨了Ga离子对发光过程的位点特异性贡献。这些发现突出了β- Ga 2 O 3 $\左(\text{Ga}\右)_{2}\左(\text{O}\右)_{3}$纳米膜作为开发极化敏感材料的强大材料平台的潜力设备。β- Ga 2 O 3 $\left(\text{Ga}\right)_{2} \left(\text{O}\right)_{3}$具有明显的各向异性,导致了取向依赖的光电特性。使其成为广泛的高级应用的极有前途的候选者。
Proving Optical Anisotropy and Polarization Effects in β-
Ga
2
O
3
$\left(\text{Ga}\right)_{2} \left(\text{O}\right)_{3}$
Nanomembranes via X-Ray Excited Optical Luminescence
Monoclinic β- is a key representative material of the ultrawide-bandgap semiconductor family. The distinct atomic arrangement in β- introduces two coordination environments for Ga ions, resulting in pronounced anisotropy in its optical, electronic, and thermal properties. In this study, a synchrotron nanoprobe to investigate the anisotropic optical properties of well-oriented β- nanomembranes with a thickness of nm, produced through mechanical exfoliation, is employed. Polarization-resolved X-ray excited optical luminescence (XEOL) measurements reveal a strong ultraviolet (UV) emission band at eV, which is strongly polarized along the c-axis. Additionally, XEOL data show blue ( eV) and deep-UV ( eV) emissions. Notably, the deep-UV band, rarely reported in conventional photoluminescence studies, is attributed to the presence of Ga vacancies, as supported by first-principles calculations. Polarization-dependent X-ray absorption near-edge structure (XANES) spectroscopy allows one to probe the distinct symmetries of the b and c crystallographic planes. Furthermore, by combining XANES and XEOL, this study investigates the site-specific contributions of Ga ions to the luminescence process. These findings highlight the potential of β- nanomembranes as a robust material platform for developing polarization-sensitive devices. The pronounced anisotropy of β- causes orientation-dependent optoelectronic properties, making it a highly promising candidate for a wide range of advanced applications.