Dr. Atsuya Yaguchi, Prof. Noriyuki Uchida, Daiki Miura, Prof. Go Watanabe, Prof. Hirotsugu Hiramatsu, Prof. Itsuki Ajioka, Prof. Teruhiko Matsubara, Prof. Toshinori Sato, Chinbat Enkhzaya, Shunto Itani, Tomokazu Saito, Prof. Takahiro Muraoka
{"title":"病毒与超分子肽纤维的光敏杂交,用于多角度控制图案和感染","authors":"Dr. Atsuya Yaguchi, Prof. Noriyuki Uchida, Daiki Miura, Prof. Go Watanabe, Prof. Hirotsugu Hiramatsu, Prof. Itsuki Ajioka, Prof. Teruhiko Matsubara, Prof. Toshinori Sato, Chinbat Enkhzaya, Shunto Itani, Tomokazu Saito, Prof. Takahiro Muraoka","doi":"10.1002/ange.202508528","DOIUrl":null,"url":null,"abstract":"<p>Viruses are versatile colloidal materials in their biofunctions, monodispersed and periodic structures, and high surface designability. For expanding the applicability of virus-based materials, spatiotemporally controlled immobilization and dispersion of viruses with retained activity should be useful, though control of the dynamic nature of viruses hybridized with commonly used polymers has been difficult due to their strong interactions. Here, we report a self-assembling peptide (A2Az) enabling photo control of adhesion and dispersion of M13 bacteriophage virus (M13 phage) and successfully demonstrate patterning of localization and infection of the virus. A2Az is a cationic peptide with amphiphilicity that consists of eight amino acid residues containing a photo-responsive azobenzene group at the second position and self-assembles into a helical supramolecular fiber to form a hydrogel. The helical fibrillar morphology of A2Az exhibits strong interaction with M13 phage, allowing for immobilization not only on a two-dimensional surface but also in a three-dimensional hydrogel with suppression of infectivity. The A2Az fiber undergoes a light-triggered fiber-to-particle transition and releases the immobilized M13 phage with retained infectivity for the photo-controlled patterning of localization and infection. This approach has potential applicability to various virus-based biomaterials, such as structural materials and materials for photo-selective gene transfection to cells.</p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"137 41","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ange.202508528","citationCount":"0","resultStr":"{\"title\":\"A Photoresponsive Hybrid of Viruses and Supramolecular Peptide Fibers for Multidimensional Control of Patterning and Infection\",\"authors\":\"Dr. Atsuya Yaguchi, Prof. Noriyuki Uchida, Daiki Miura, Prof. Go Watanabe, Prof. Hirotsugu Hiramatsu, Prof. Itsuki Ajioka, Prof. Teruhiko Matsubara, Prof. Toshinori Sato, Chinbat Enkhzaya, Shunto Itani, Tomokazu Saito, Prof. Takahiro Muraoka\",\"doi\":\"10.1002/ange.202508528\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Viruses are versatile colloidal materials in their biofunctions, monodispersed and periodic structures, and high surface designability. For expanding the applicability of virus-based materials, spatiotemporally controlled immobilization and dispersion of viruses with retained activity should be useful, though control of the dynamic nature of viruses hybridized with commonly used polymers has been difficult due to their strong interactions. Here, we report a self-assembling peptide (A2Az) enabling photo control of adhesion and dispersion of M13 bacteriophage virus (M13 phage) and successfully demonstrate patterning of localization and infection of the virus. A2Az is a cationic peptide with amphiphilicity that consists of eight amino acid residues containing a photo-responsive azobenzene group at the second position and self-assembles into a helical supramolecular fiber to form a hydrogel. The helical fibrillar morphology of A2Az exhibits strong interaction with M13 phage, allowing for immobilization not only on a two-dimensional surface but also in a three-dimensional hydrogel with suppression of infectivity. The A2Az fiber undergoes a light-triggered fiber-to-particle transition and releases the immobilized M13 phage with retained infectivity for the photo-controlled patterning of localization and infection. This approach has potential applicability to various virus-based biomaterials, such as structural materials and materials for photo-selective gene transfection to cells.</p>\",\"PeriodicalId\":7803,\"journal\":{\"name\":\"Angewandte Chemie\",\"volume\":\"137 41\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ange.202508528\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ange.202508528\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ange.202508528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Photoresponsive Hybrid of Viruses and Supramolecular Peptide Fibers for Multidimensional Control of Patterning and Infection
Viruses are versatile colloidal materials in their biofunctions, monodispersed and periodic structures, and high surface designability. For expanding the applicability of virus-based materials, spatiotemporally controlled immobilization and dispersion of viruses with retained activity should be useful, though control of the dynamic nature of viruses hybridized with commonly used polymers has been difficult due to their strong interactions. Here, we report a self-assembling peptide (A2Az) enabling photo control of adhesion and dispersion of M13 bacteriophage virus (M13 phage) and successfully demonstrate patterning of localization and infection of the virus. A2Az is a cationic peptide with amphiphilicity that consists of eight amino acid residues containing a photo-responsive azobenzene group at the second position and self-assembles into a helical supramolecular fiber to form a hydrogel. The helical fibrillar morphology of A2Az exhibits strong interaction with M13 phage, allowing for immobilization not only on a two-dimensional surface but also in a three-dimensional hydrogel with suppression of infectivity. The A2Az fiber undergoes a light-triggered fiber-to-particle transition and releases the immobilized M13 phage with retained infectivity for the photo-controlled patterning of localization and infection. This approach has potential applicability to various virus-based biomaterials, such as structural materials and materials for photo-selective gene transfection to cells.