低阈值InP纳米线光子晶体表面发射激光器的设计与表征

IF 3.9 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Navoda Jayawardana, Matthew T. Larson, Chia-Wei Tu, Naiyin Wang, Wei Wen Wong, Hark Hoe Tan, Chennupati Jagadish, Heidrun Schmitzer, Hans-Peter Wagner
{"title":"低阈值InP纳米线光子晶体表面发射激光器的设计与表征","authors":"Navoda Jayawardana,&nbsp;Matthew T. Larson,&nbsp;Chia-Wei Tu,&nbsp;Naiyin Wang,&nbsp;Wei Wen Wong,&nbsp;Hark Hoe Tan,&nbsp;Chennupati Jagadish,&nbsp;Heidrun Schmitzer,&nbsp;Hans-Peter Wagner","doi":"10.1002/adpr.202500121","DOIUrl":null,"url":null,"abstract":"<p>This study examines the lasing performance of optically pumped wurtzite-phase InP nanowire (NW) photonic crystal surface-emitting lasers (PCSELs) with the goal of optimizing the cavity design for low-threshold lasing. By varying the photonic crystal lattice constant and NW diameter, this study systematically investigates the threshold power and the threshold gain. Using finite-difference time-domain simulations and gain spectra modeling, this study finds that the lowest pump threshold occurs when the cavity resonance energy is slightly above the spontaneous emission maximum energy due to high differential gain. Furthermore, PCSEL structures with an apothem-to-pitch ratio of ≈0.15 are advantageous because they provide increased confinement factors, resulting in the lowest lasing threshold and high laser output. This study paves the path toward low-threshold NW PCSEL designs for photonic integrated circuits.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"6 10","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202500121","citationCount":"0","resultStr":"{\"title\":\"Design and Characterization of Low-Threshold InP Nanowire Photonic Crystal Surface-Emitting Lasers\",\"authors\":\"Navoda Jayawardana,&nbsp;Matthew T. Larson,&nbsp;Chia-Wei Tu,&nbsp;Naiyin Wang,&nbsp;Wei Wen Wong,&nbsp;Hark Hoe Tan,&nbsp;Chennupati Jagadish,&nbsp;Heidrun Schmitzer,&nbsp;Hans-Peter Wagner\",\"doi\":\"10.1002/adpr.202500121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study examines the lasing performance of optically pumped wurtzite-phase InP nanowire (NW) photonic crystal surface-emitting lasers (PCSELs) with the goal of optimizing the cavity design for low-threshold lasing. By varying the photonic crystal lattice constant and NW diameter, this study systematically investigates the threshold power and the threshold gain. Using finite-difference time-domain simulations and gain spectra modeling, this study finds that the lowest pump threshold occurs when the cavity resonance energy is slightly above the spontaneous emission maximum energy due to high differential gain. Furthermore, PCSEL structures with an apothem-to-pitch ratio of ≈0.15 are advantageous because they provide increased confinement factors, resulting in the lowest lasing threshold and high laser output. This study paves the path toward low-threshold NW PCSEL designs for photonic integrated circuits.</p>\",\"PeriodicalId\":7263,\"journal\":{\"name\":\"Advanced Photonics Research\",\"volume\":\"6 10\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202500121\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Photonics Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adpr.202500121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Photonics Research","FirstCategoryId":"1085","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adpr.202500121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究考察了光泵浦纤锌矿相InP纳米线(NW)光子晶体表面发射激光器(PCSELs)的激光性能,目的是优化低阈值激光的腔体设计。通过改变光子晶体晶格常数和NW直径,系统地研究了阈值功率和阈值增益。通过时域有限差分仿真和增益谱建模,研究发现,由于高差分增益,当腔共振能量略高于自发发射最大能量时,出现最低泵浦阈值。此外,螺距比≈0.15的PCSEL结构具有优势,因为它们提供了更多的约束因子,从而实现了最低的激光阈值和高激光输出。本研究为光子集成电路的低阈值NW PCSEL设计铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Design and Characterization of Low-Threshold InP Nanowire Photonic Crystal Surface-Emitting Lasers

Design and Characterization of Low-Threshold InP Nanowire Photonic Crystal Surface-Emitting Lasers

This study examines the lasing performance of optically pumped wurtzite-phase InP nanowire (NW) photonic crystal surface-emitting lasers (PCSELs) with the goal of optimizing the cavity design for low-threshold lasing. By varying the photonic crystal lattice constant and NW diameter, this study systematically investigates the threshold power and the threshold gain. Using finite-difference time-domain simulations and gain spectra modeling, this study finds that the lowest pump threshold occurs when the cavity resonance energy is slightly above the spontaneous emission maximum energy due to high differential gain. Furthermore, PCSEL structures with an apothem-to-pitch ratio of ≈0.15 are advantageous because they provide increased confinement factors, resulting in the lowest lasing threshold and high laser output. This study paves the path toward low-threshold NW PCSEL designs for photonic integrated circuits.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
2.70%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信