金属卤化物钙钛矿的压力辅助陶瓷加工

IF 3.9 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Michael C. Brennan, Kyle G. Berry, Morris Olumba, Michael J. Carter, Tod A. Grusenmeyer, Christopher L. McCleese
{"title":"金属卤化物钙钛矿的压力辅助陶瓷加工","authors":"Michael C. Brennan,&nbsp;Kyle G. Berry,&nbsp;Morris Olumba,&nbsp;Michael J. Carter,&nbsp;Tod A. Grusenmeyer,&nbsp;Christopher L. McCleese","doi":"10.1002/adpr.202500076","DOIUrl":null,"url":null,"abstract":"<p>Increasing demand for metal halide perovskites in applications beyond photovoltaics (e.g., hard radiation detection) necessitates hundreds of microns to millimeters thick active layers for optimal performance. This review critically assesses low-temperature, pressure-assisted ceramic processing as a pivotal technique to fabricate dense, polycrystalline wafers with precisely controlled macroscopic dimensions as well as microstructural properties. Exploiting the soft ionic bonding and subsequent plasticity of metal halide perovskites, pressure-assisted ceramic processing can achieve rapid densification at drastically reduced temperatures (≲100 °C) compared to common oxide ceramics (≳1000 °C). As a direct result, metal halide perovskite ceramics can be manufactured using cost-effective pressure-assisted ceramic processing methods (e.g., low-temperature uniaxial pressing). However, a definitive understanding of the intricate relationship between sintering parameters (temperature, pressure, and powder characteristics) and the resulting microstructural attributes (pore/grain size and distribution, relative density, porosity, and crystallinity) and optoelectronic responses remains a knowledge gap. To metal halide perovskite experts, the aim is to emphasize the considerable advantages of pressure-assisted ceramic processing, and to expert ceramists, the aim is to demonstrate that metal halide perovskites offer a compelling material class for established ceramic processing techniques. Bridging the knowledge between these two distinct areas of expertise will help drive transformative progress in metal halide perovskite-based technologies.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"6 10","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202500076","citationCount":"0","resultStr":"{\"title\":\"Pressure-Assisted Ceramic Processing of Metal Halide Perovskites\",\"authors\":\"Michael C. Brennan,&nbsp;Kyle G. Berry,&nbsp;Morris Olumba,&nbsp;Michael J. Carter,&nbsp;Tod A. Grusenmeyer,&nbsp;Christopher L. McCleese\",\"doi\":\"10.1002/adpr.202500076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Increasing demand for metal halide perovskites in applications beyond photovoltaics (e.g., hard radiation detection) necessitates hundreds of microns to millimeters thick active layers for optimal performance. This review critically assesses low-temperature, pressure-assisted ceramic processing as a pivotal technique to fabricate dense, polycrystalline wafers with precisely controlled macroscopic dimensions as well as microstructural properties. Exploiting the soft ionic bonding and subsequent plasticity of metal halide perovskites, pressure-assisted ceramic processing can achieve rapid densification at drastically reduced temperatures (≲100 °C) compared to common oxide ceramics (≳1000 °C). As a direct result, metal halide perovskite ceramics can be manufactured using cost-effective pressure-assisted ceramic processing methods (e.g., low-temperature uniaxial pressing). However, a definitive understanding of the intricate relationship between sintering parameters (temperature, pressure, and powder characteristics) and the resulting microstructural attributes (pore/grain size and distribution, relative density, porosity, and crystallinity) and optoelectronic responses remains a knowledge gap. To metal halide perovskite experts, the aim is to emphasize the considerable advantages of pressure-assisted ceramic processing, and to expert ceramists, the aim is to demonstrate that metal halide perovskites offer a compelling material class for established ceramic processing techniques. Bridging the knowledge between these two distinct areas of expertise will help drive transformative progress in metal halide perovskite-based technologies.</p>\",\"PeriodicalId\":7263,\"journal\":{\"name\":\"Advanced Photonics Research\",\"volume\":\"6 10\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202500076\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Photonics Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adpr.202500076\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Photonics Research","FirstCategoryId":"1085","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adpr.202500076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

金属卤化物钙钛矿在光伏以外的应用(例如,硬辐射检测)中的需求不断增加,需要数百微米到毫米厚的有源层以获得最佳性能。这篇综述批判性地评估了低温,压力辅助陶瓷加工作为一种关键技术来制造致密,具有精确控制的宏观尺寸和微观结构性能的多晶圆。利用金属卤化物钙钛矿的软离子键和随后的可塑性,与普通氧化物陶瓷(约1000℃)相比,压力辅助陶瓷加工可以在急剧降低的温度(约100℃)下实现快速致密化。作为直接结果,金属卤化物钙钛矿陶瓷可以使用成本效益高的压力辅助陶瓷加工方法(例如,低温单轴压制)制造。然而,对烧结参数(温度、压力和粉末特性)与由此产生的微观结构属性(孔隙/晶粒尺寸和分布、相对密度、孔隙率和结晶度)和光电子响应之间复杂关系的明确理解仍然是一个知识缺口。对于金属卤化物钙钛矿专家来说,目标是强调压力辅助陶瓷加工的巨大优势,而对于陶瓷专家来说,目标是证明金属卤化物钙钛矿为已建立的陶瓷加工技术提供了令人信服的材料类别。在这两个不同的专业领域之间架起桥梁,将有助于推动金属卤化物钙钛矿技术的变革性进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Pressure-Assisted Ceramic Processing of Metal Halide Perovskites

Pressure-Assisted Ceramic Processing of Metal Halide Perovskites

Increasing demand for metal halide perovskites in applications beyond photovoltaics (e.g., hard radiation detection) necessitates hundreds of microns to millimeters thick active layers for optimal performance. This review critically assesses low-temperature, pressure-assisted ceramic processing as a pivotal technique to fabricate dense, polycrystalline wafers with precisely controlled macroscopic dimensions as well as microstructural properties. Exploiting the soft ionic bonding and subsequent plasticity of metal halide perovskites, pressure-assisted ceramic processing can achieve rapid densification at drastically reduced temperatures (≲100 °C) compared to common oxide ceramics (≳1000 °C). As a direct result, metal halide perovskite ceramics can be manufactured using cost-effective pressure-assisted ceramic processing methods (e.g., low-temperature uniaxial pressing). However, a definitive understanding of the intricate relationship between sintering parameters (temperature, pressure, and powder characteristics) and the resulting microstructural attributes (pore/grain size and distribution, relative density, porosity, and crystallinity) and optoelectronic responses remains a knowledge gap. To metal halide perovskite experts, the aim is to emphasize the considerable advantages of pressure-assisted ceramic processing, and to expert ceramists, the aim is to demonstrate that metal halide perovskites offer a compelling material class for established ceramic processing techniques. Bridging the knowledge between these two distinct areas of expertise will help drive transformative progress in metal halide perovskite-based technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
2.70%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信