Suyong Park, Donghyun Ryu, Sungjoon Kim, Woo Young Choi, Sungjun Kim
{"title":"完全兼容CMOS电荷阱存储器的储层计算系统","authors":"Suyong Park, Donghyun Ryu, Sungjoon Kim, Woo Young Choi, Sungjun Kim","doi":"10.1002/admt.202500858","DOIUrl":null,"url":null,"abstract":"<p>Reservoir computing (RC) systems have gained considerable attention for their effectiveness in temporal data processing. Although extensive research has been conducted on RC systems, studies focusing on complementary metal-oxide semiconductor-compatible flash memory devices remain scarce. In this study, the potential of RC systems based on TiN/Al<sub>2</sub>O<sub>3</sub>/Si<sub>3</sub>N<sub>4</sub>/SiO<sub>2</sub>/poly-Si (TANOS) is explored, utilizing the high-pressure annealing (HPA) process to enhance the performance of the device. Specifically, HPA-treated TANOS devices are employed in the readout layer to ensure stable long-term memory characteristics, while untreated TANOS devices are used in the reservoir layer, leveraging their short-term memory properties induced by interfacial traps. This study also investigates the feasibility of TANOS devices for neuromorphic computing. Based on Modified National Institute of Standards and Technology simulations, the complete TANOS-based RC system achieves a recognition rate of 84.48%, demonstrating its potential for temporal pattern recognition tasks.</p>","PeriodicalId":7292,"journal":{"name":"Advanced Materials Technologies","volume":"10 19","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fully CMOS Compatible Charge Trap Memory-Based Reservoir Computing System\",\"authors\":\"Suyong Park, Donghyun Ryu, Sungjoon Kim, Woo Young Choi, Sungjun Kim\",\"doi\":\"10.1002/admt.202500858\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Reservoir computing (RC) systems have gained considerable attention for their effectiveness in temporal data processing. Although extensive research has been conducted on RC systems, studies focusing on complementary metal-oxide semiconductor-compatible flash memory devices remain scarce. In this study, the potential of RC systems based on TiN/Al<sub>2</sub>O<sub>3</sub>/Si<sub>3</sub>N<sub>4</sub>/SiO<sub>2</sub>/poly-Si (TANOS) is explored, utilizing the high-pressure annealing (HPA) process to enhance the performance of the device. Specifically, HPA-treated TANOS devices are employed in the readout layer to ensure stable long-term memory characteristics, while untreated TANOS devices are used in the reservoir layer, leveraging their short-term memory properties induced by interfacial traps. This study also investigates the feasibility of TANOS devices for neuromorphic computing. Based on Modified National Institute of Standards and Technology simulations, the complete TANOS-based RC system achieves a recognition rate of 84.48%, demonstrating its potential for temporal pattern recognition tasks.</p>\",\"PeriodicalId\":7292,\"journal\":{\"name\":\"Advanced Materials Technologies\",\"volume\":\"10 19\",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials Technologies\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/admt.202500858\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Technologies","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/admt.202500858","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Fully CMOS Compatible Charge Trap Memory-Based Reservoir Computing System
Reservoir computing (RC) systems have gained considerable attention for their effectiveness in temporal data processing. Although extensive research has been conducted on RC systems, studies focusing on complementary metal-oxide semiconductor-compatible flash memory devices remain scarce. In this study, the potential of RC systems based on TiN/Al2O3/Si3N4/SiO2/poly-Si (TANOS) is explored, utilizing the high-pressure annealing (HPA) process to enhance the performance of the device. Specifically, HPA-treated TANOS devices are employed in the readout layer to ensure stable long-term memory characteristics, while untreated TANOS devices are used in the reservoir layer, leveraging their short-term memory properties induced by interfacial traps. This study also investigates the feasibility of TANOS devices for neuromorphic computing. Based on Modified National Institute of Standards and Technology simulations, the complete TANOS-based RC system achieves a recognition rate of 84.48%, demonstrating its potential for temporal pattern recognition tasks.
期刊介绍:
Advanced Materials Technologies Advanced Materials Technologies is the new home for all technology-related materials applications research, with particular focus on advanced device design, fabrication and integration, as well as new technologies based on novel materials. It bridges the gap between fundamental laboratory research and industry.