使用多组分油墨的低功耗氧化还原门控晶体管的可调3D气溶胶喷射打印

IF 6.4 3区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Andrew J. Erwin, Shiyu Hu, Hua Zhou, Samuel D. Miller, Evan J. Musterman, Andrew M. Kiss, Yang Yang, Yuepeng Zhang, Wei Chen
{"title":"使用多组分油墨的低功耗氧化还原门控晶体管的可调3D气溶胶喷射打印","authors":"Andrew J. Erwin,&nbsp;Shiyu Hu,&nbsp;Hua Zhou,&nbsp;Samuel D. Miller,&nbsp;Evan J. Musterman,&nbsp;Andrew M. Kiss,&nbsp;Yang Yang,&nbsp;Yuepeng Zhang,&nbsp;Wei Chen","doi":"10.1002/admt.202500648","DOIUrl":null,"url":null,"abstract":"<p>Printed hybrid electronics (PHE) offer a promising alternative for microelectronics fabrication, addressing some limitations of traditional subtractive manufacturing. Despite the versatility of PHE, particularly in the customization of printing inks, these devices have not yet matched the performance of silicon-based electronics due to challenges in gating mechanisms and operational stability. However, the potential of low-voltage redox-gating to achieve significant carrier modulations in correlated metal oxides remains unexplored in PHE. This study systematically investigates vanadium dioxide (VO<sub>2</sub>) nanoparticles and redox inks, linking their organization in solution to their morphology, phase state, and properties in solid films and multilayered structures. Using an aerosol jet printer (AJP), a solid-state VO<sub>2</sub> transistor is fabricated, operating at just 0.4 V gating voltage. The printed VO<sub>2</sub> films demonstrate redox-modulated conductivity and consistent transistor behavior. The solid-state redox gating materials also provide long-term stability, with the device maintaining performance over 6000 cycles without degradation. These results highlight the potential of redox gating to enhance the application of functional nanoparticles in printed hybrid microelectronics, especially for flexible, low-voltage, and energy-efficient devices.</p>","PeriodicalId":7292,"journal":{"name":"Advanced Materials Technologies","volume":"10 19","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/admt.202500648","citationCount":"0","resultStr":"{\"title\":\"Tunable 3D Aerosol Jet Printing of Low-Power Redox-Gated Transistors with Multicomponent Inks\",\"authors\":\"Andrew J. Erwin,&nbsp;Shiyu Hu,&nbsp;Hua Zhou,&nbsp;Samuel D. Miller,&nbsp;Evan J. Musterman,&nbsp;Andrew M. Kiss,&nbsp;Yang Yang,&nbsp;Yuepeng Zhang,&nbsp;Wei Chen\",\"doi\":\"10.1002/admt.202500648\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Printed hybrid electronics (PHE) offer a promising alternative for microelectronics fabrication, addressing some limitations of traditional subtractive manufacturing. Despite the versatility of PHE, particularly in the customization of printing inks, these devices have not yet matched the performance of silicon-based electronics due to challenges in gating mechanisms and operational stability. However, the potential of low-voltage redox-gating to achieve significant carrier modulations in correlated metal oxides remains unexplored in PHE. This study systematically investigates vanadium dioxide (VO<sub>2</sub>) nanoparticles and redox inks, linking their organization in solution to their morphology, phase state, and properties in solid films and multilayered structures. Using an aerosol jet printer (AJP), a solid-state VO<sub>2</sub> transistor is fabricated, operating at just 0.4 V gating voltage. The printed VO<sub>2</sub> films demonstrate redox-modulated conductivity and consistent transistor behavior. The solid-state redox gating materials also provide long-term stability, with the device maintaining performance over 6000 cycles without degradation. These results highlight the potential of redox gating to enhance the application of functional nanoparticles in printed hybrid microelectronics, especially for flexible, low-voltage, and energy-efficient devices.</p>\",\"PeriodicalId\":7292,\"journal\":{\"name\":\"Advanced Materials Technologies\",\"volume\":\"10 19\",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/admt.202500648\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials Technologies\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/admt.202500648\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Technologies","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/admt.202500648","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

印刷混合电子(PHE)为微电子制造提供了一个有前途的替代方案,解决了传统减法制造的一些局限性。尽管PHE具有多功能性,特别是在印刷油墨的定制方面,但由于在门控机制和操作稳定性方面的挑战,这些设备的性能尚未与硅基电子设备相匹配。然而,低压氧化还原门控在相关金属氧化物中实现显著载流子调制的潜力在PHE中仍未被探索。本研究系统地研究了二氧化钒纳米颗粒和氧化还原油墨,将它们在溶液中的组织与其在固体薄膜和多层结构中的形态、相态和性质联系起来。利用气溶胶喷射打印机(AJP),制作了一个固态VO2晶体管,其工作电压仅为0.4 V。打印的VO2薄膜表现出氧化还原调制的电导率和一致的晶体管行为。固态氧化还原门控材料也提供长期稳定性,设备保持性能超过6000次循环而不退化。这些结果突出了氧化还原门控在增强功能纳米颗粒在印刷混合微电子中的应用潜力,特别是在柔性、低压和节能器件方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Tunable 3D Aerosol Jet Printing of Low-Power Redox-Gated Transistors with Multicomponent Inks

Tunable 3D Aerosol Jet Printing of Low-Power Redox-Gated Transistors with Multicomponent Inks

Printed hybrid electronics (PHE) offer a promising alternative for microelectronics fabrication, addressing some limitations of traditional subtractive manufacturing. Despite the versatility of PHE, particularly in the customization of printing inks, these devices have not yet matched the performance of silicon-based electronics due to challenges in gating mechanisms and operational stability. However, the potential of low-voltage redox-gating to achieve significant carrier modulations in correlated metal oxides remains unexplored in PHE. This study systematically investigates vanadium dioxide (VO2) nanoparticles and redox inks, linking their organization in solution to their morphology, phase state, and properties in solid films and multilayered structures. Using an aerosol jet printer (AJP), a solid-state VO2 transistor is fabricated, operating at just 0.4 V gating voltage. The printed VO2 films demonstrate redox-modulated conductivity and consistent transistor behavior. The solid-state redox gating materials also provide long-term stability, with the device maintaining performance over 6000 cycles without degradation. These results highlight the potential of redox gating to enhance the application of functional nanoparticles in printed hybrid microelectronics, especially for flexible, low-voltage, and energy-efficient devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials Technologies
Advanced Materials Technologies Materials Science-General Materials Science
CiteScore
10.20
自引率
4.40%
发文量
566
期刊介绍: Advanced Materials Technologies Advanced Materials Technologies is the new home for all technology-related materials applications research, with particular focus on advanced device design, fabrication and integration, as well as new technologies based on novel materials. It bridges the gap between fundamental laboratory research and industry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信