基于选择性海水氧化的Ni4+ Lewis酸位点仿生设计

Huimin Mao, Xiaobin Liu, Tong Cui, Junheng Tang, Zhi Su, Jingqi Chi, Yongming Chai, Zexing Wu, Lei Wang
{"title":"基于选择性海水氧化的Ni4+ Lewis酸位点仿生设计","authors":"Huimin Mao,&nbsp;Xiaobin Liu,&nbsp;Tong Cui,&nbsp;Junheng Tang,&nbsp;Zhi Su,&nbsp;Jingqi Chi,&nbsp;Yongming Chai,&nbsp;Zexing Wu,&nbsp;Lei Wang","doi":"10.1002/ange.202511867","DOIUrl":null,"url":null,"abstract":"<p>The side reaction caused by chloride ions and the toxicity to the active site have always been the hindrance to the electrocatalyst of the oxygen evolution reaction (OER) for seawater splitting. Herein, inspired by the early flowering of damaged plants, we designed a catalyst rich in oxygen vacancies (O<sub>vac</sub>) and proved that O<sub>vac</sub> can accelerate the formation of Ni<sup>3+</sup> and further oxidize it to Ni<sup>4+</sup>, which we named as the “ripening” mechanism of O<sub>vac</sub>. O<sub>vac</sub> reduces the hydrogen proton desorption energy by regulating local charge redistribution, thus realizing the rapid transformation of Ni<sup>2+</sup>→Ni<sup>3+</sup>→Ni<sup>4+</sup>. Meanwhile, the hard Lewis acid Ni<sup>4+</sup> has strong selectivity to OH<sup>−</sup>, avoiding the competitiveness and corrosiveness of chloride ions in seawater. This work provides an effective strategy for the simple and rapid construction of self-rebuilding high-valence Ni<sup>4+</sup> electrocatalysts, and is expected to provide guidance for the development of seawater electrolysis.</p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"137 41","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bionic Design of Ni4+ Lewis Acid Site Based on Selective Seawater Oxidation\",\"authors\":\"Huimin Mao,&nbsp;Xiaobin Liu,&nbsp;Tong Cui,&nbsp;Junheng Tang,&nbsp;Zhi Su,&nbsp;Jingqi Chi,&nbsp;Yongming Chai,&nbsp;Zexing Wu,&nbsp;Lei Wang\",\"doi\":\"10.1002/ange.202511867\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The side reaction caused by chloride ions and the toxicity to the active site have always been the hindrance to the electrocatalyst of the oxygen evolution reaction (OER) for seawater splitting. Herein, inspired by the early flowering of damaged plants, we designed a catalyst rich in oxygen vacancies (O<sub>vac</sub>) and proved that O<sub>vac</sub> can accelerate the formation of Ni<sup>3+</sup> and further oxidize it to Ni<sup>4+</sup>, which we named as the “ripening” mechanism of O<sub>vac</sub>. O<sub>vac</sub> reduces the hydrogen proton desorption energy by regulating local charge redistribution, thus realizing the rapid transformation of Ni<sup>2+</sup>→Ni<sup>3+</sup>→Ni<sup>4+</sup>. Meanwhile, the hard Lewis acid Ni<sup>4+</sup> has strong selectivity to OH<sup>−</sup>, avoiding the competitiveness and corrosiveness of chloride ions in seawater. This work provides an effective strategy for the simple and rapid construction of self-rebuilding high-valence Ni<sup>4+</sup> electrocatalysts, and is expected to provide guidance for the development of seawater electrolysis.</p>\",\"PeriodicalId\":7803,\"journal\":{\"name\":\"Angewandte Chemie\",\"volume\":\"137 41\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ange.202511867\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ange.202511867","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

氯离子引起的副反应和对活性部位的毒性一直是海水裂解析氧反应(OER)电催化剂的障碍。在此,我们受到受损植物提前开花的启发,设计了一种富氧空位催化剂(Ovac),并证明了Ovac可以加速Ni3+的形成并进一步氧化为Ni4+,我们将其命名为Ovac的“成熟”机制。Ovac通过调节局部电荷重分配降低氢质子的解吸能,从而实现Ni2+→Ni3+→Ni4+的快速转化。同时,硬Lewis酸Ni4+对OH−具有较强的选择性,避免了氯离子在海水中的竞争性和腐蚀性。本研究为简单快速构建自重构高价Ni4+电催化剂提供了有效策略,有望为海水电解的发展提供指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Bionic Design of Ni4+ Lewis Acid Site Based on Selective Seawater Oxidation

Bionic Design of Ni4+ Lewis Acid Site Based on Selective Seawater Oxidation

The side reaction caused by chloride ions and the toxicity to the active site have always been the hindrance to the electrocatalyst of the oxygen evolution reaction (OER) for seawater splitting. Herein, inspired by the early flowering of damaged plants, we designed a catalyst rich in oxygen vacancies (Ovac) and proved that Ovac can accelerate the formation of Ni3+ and further oxidize it to Ni4+, which we named as the “ripening” mechanism of Ovac. Ovac reduces the hydrogen proton desorption energy by regulating local charge redistribution, thus realizing the rapid transformation of Ni2+→Ni3+→Ni4+. Meanwhile, the hard Lewis acid Ni4+ has strong selectivity to OH, avoiding the competitiveness and corrosiveness of chloride ions in seawater. This work provides an effective strategy for the simple and rapid construction of self-rebuilding high-valence Ni4+ electrocatalysts, and is expected to provide guidance for the development of seawater electrolysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Angewandte Chemie
Angewandte Chemie 化学科学, 有机化学, 有机合成
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信