光学材料中涡旋光的霍尔效应

IF 3.9 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Wei-Si Qiu, Li-Li Yang, Dan-Dan Lian, Peng-Ming Zhang
{"title":"光学材料中涡旋光的霍尔效应","authors":"Wei-Si Qiu,&nbsp;Li-Li Yang,&nbsp;Dan-Dan Lian,&nbsp;Peng-Ming Zhang","doi":"10.1002/adpr.202500080","DOIUrl":null,"url":null,"abstract":"<p>For light, its spin can be independent of the spatial distribution of its wave function, whereas its intrinsic orbital angular momentum does depend on this distribution. This difference suggests that the spin Hall effect may differ from the orbital Hall effect as light propagates through optical materials. Herein, optical materials are modeled as curved spacetime and light propagation in two specific materials by solving the covariant Maxwell equations is investigated. It is found that the trajectory of light with spin <i>σ</i> and intrinsic orbital angular momentum <i>ℓ</i> deviates from that of light without angular momentum (<span></span><math>\n <semantics>\n <mrow>\n <mi>σ</mi>\n <mo>=</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$\\sigma &amp;#x00026;amp;amp;amp;amp;amp;amp;amp;amp;amp;equals; 0$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>ℓ</mi>\n <mo>=</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$&amp;#x00026;amp;amp;amp;amp;amp;amp;amp;amp;amp;ell; &amp;#x00026;amp;amp;amp;amp;amp;amp;amp;amp;amp;equals; 0$</annotation>\n </semantics></math>) by an angle <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>θ</mi>\n <mrow>\n <mi>σ</mi>\n <mo>,</mo>\n <mi>ℓ</mi>\n </mrow>\n </msub>\n <mo>∝</mo>\n <mn>2</mn>\n <mi>σ</mi>\n <mo>+</mo>\n <mi>ℓ</mi>\n </mrow>\n <annotation>$\\left(\\theta\\right)_{\\sigma , &amp;#x00026;amp;amp;amp;amp;amp;amp;amp;amp;amp;ell;} \\propto 2 \\sigma &amp;#x00026;amp;amp;amp;amp;amp;amp;amp;amp;amp;plus; &amp;#x00026;amp;amp;amp;amp;amp;amp;amp;amp;amp;ell;$</annotation>\n </semantics></math>. In particular, the contribution of spin <i>σ</i> to angle <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>θ</mi>\n <mrow>\n <mi>σ</mi>\n <mo>,</mo>\n <mi>ℓ</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation>$\\left(\\theta\\right)_{\\sigma , &amp;#x00026;amp;amp;amp;amp;amp;amp;amp;amp;amp;ell;}$</annotation>\n </semantics></math> is twice that of the intrinsic orbital angular momentum <i>ℓ</i>, highlighting their differing effects on light propagation in optical materials. Furthermore, angle <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>θ</mi>\n <mrow>\n <mi>σ</mi>\n <mo>,</mo>\n <mi>ℓ</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation>$\\left(\\theta\\right)_{\\sigma , &amp;#x00026;amp;amp;amp;amp;amp;amp;amp;amp;amp;ell;}$</annotation>\n </semantics></math> can potentially be observed experimentally, enhancing the understanding of the role of angular momentum in light propagation.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"6 10","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202500080","citationCount":"0","resultStr":"{\"title\":\"The Hall Effects of Vortex Light in Optical Materials\",\"authors\":\"Wei-Si Qiu,&nbsp;Li-Li Yang,&nbsp;Dan-Dan Lian,&nbsp;Peng-Ming Zhang\",\"doi\":\"10.1002/adpr.202500080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For light, its spin can be independent of the spatial distribution of its wave function, whereas its intrinsic orbital angular momentum does depend on this distribution. This difference suggests that the spin Hall effect may differ from the orbital Hall effect as light propagates through optical materials. Herein, optical materials are modeled as curved spacetime and light propagation in two specific materials by solving the covariant Maxwell equations is investigated. It is found that the trajectory of light with spin <i>σ</i> and intrinsic orbital angular momentum <i>ℓ</i> deviates from that of light without angular momentum (<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>σ</mi>\\n <mo>=</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$\\\\sigma &amp;#x00026;amp;amp;amp;amp;amp;amp;amp;amp;amp;equals; 0$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>ℓ</mi>\\n <mo>=</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$&amp;#x00026;amp;amp;amp;amp;amp;amp;amp;amp;amp;ell; &amp;#x00026;amp;amp;amp;amp;amp;amp;amp;amp;amp;equals; 0$</annotation>\\n </semantics></math>) by an angle <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>θ</mi>\\n <mrow>\\n <mi>σ</mi>\\n <mo>,</mo>\\n <mi>ℓ</mi>\\n </mrow>\\n </msub>\\n <mo>∝</mo>\\n <mn>2</mn>\\n <mi>σ</mi>\\n <mo>+</mo>\\n <mi>ℓ</mi>\\n </mrow>\\n <annotation>$\\\\left(\\\\theta\\\\right)_{\\\\sigma , &amp;#x00026;amp;amp;amp;amp;amp;amp;amp;amp;amp;ell;} \\\\propto 2 \\\\sigma &amp;#x00026;amp;amp;amp;amp;amp;amp;amp;amp;amp;plus; &amp;#x00026;amp;amp;amp;amp;amp;amp;amp;amp;amp;ell;$</annotation>\\n </semantics></math>. In particular, the contribution of spin <i>σ</i> to angle <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>θ</mi>\\n <mrow>\\n <mi>σ</mi>\\n <mo>,</mo>\\n <mi>ℓ</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$\\\\left(\\\\theta\\\\right)_{\\\\sigma , &amp;#x00026;amp;amp;amp;amp;amp;amp;amp;amp;amp;ell;}$</annotation>\\n </semantics></math> is twice that of the intrinsic orbital angular momentum <i>ℓ</i>, highlighting their differing effects on light propagation in optical materials. Furthermore, angle <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>θ</mi>\\n <mrow>\\n <mi>σ</mi>\\n <mo>,</mo>\\n <mi>ℓ</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$\\\\left(\\\\theta\\\\right)_{\\\\sigma , &amp;#x00026;amp;amp;amp;amp;amp;amp;amp;amp;amp;ell;}$</annotation>\\n </semantics></math> can potentially be observed experimentally, enhancing the understanding of the role of angular momentum in light propagation.</p>\",\"PeriodicalId\":7263,\"journal\":{\"name\":\"Advanced Photonics Research\",\"volume\":\"6 10\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202500080\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Photonics Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adpr.202500080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Photonics Research","FirstCategoryId":"1085","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adpr.202500080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

对于光,它的自旋可以独立于它的波函数的空间分布,而它的固有轨道角动量确实依赖于这个分布。这一差异表明,当光通过光学材料传播时,自旋霍尔效应可能与轨道霍尔效应不同。本文将光学材料建模为弯曲的时空,并通过求解协变麦克斯韦方程组研究了光在两种特定材料中的传播。发现具有自旋σ和本征轨道角动量的光的轨迹与没有角动量(σ = 0 $\sigma &#x00026;amp;amp;amp;amp;amp;amp;amp;amp;amp;equals; 0$和r = 0 $&#x00026;amp;amp;amp;amp;amp;amp;amp;amp;amp;ell; &#x00026;amp;amp;amp;amp;amp;amp;amp;amp;amp;equals; 0$)的光的轨迹偏离了一个角度θ σ, r∝2 σ + r $\left(\theta\right)_{\sigma , &#x00026;amp;amp;amp;amp;amp;amp;amp;amp;amp;ell;} \propto 2 \sigma &#x00026;amp;amp;amp;amp;amp;amp;amp;amp;amp;plus; &#x00026;amp;amp;amp;amp;amp;amp;amp;amp;amp;ell;$。特别是,自旋σ对角θ σ, r $\left(\theta\right)_{\sigma , &#x00026;amp;amp;amp;amp;amp;amp;amp;amp;amp;ell;}$的贡献是本征轨道角动量r的两倍,突出了它们对光在光学材料中的传播的不同影响。此外,角θ σ, r $\left(\theta\right)_{\sigma , &#x00026;amp;amp;amp;amp;amp;amp;amp;amp;amp;ell;}$可以通过实验观察到,增强了对角动量在光传播中的作用的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The Hall Effects of Vortex Light in Optical Materials

The Hall Effects of Vortex Light in Optical Materials

For light, its spin can be independent of the spatial distribution of its wave function, whereas its intrinsic orbital angular momentum does depend on this distribution. This difference suggests that the spin Hall effect may differ from the orbital Hall effect as light propagates through optical materials. Herein, optical materials are modeled as curved spacetime and light propagation in two specific materials by solving the covariant Maxwell equations is investigated. It is found that the trajectory of light with spin σ and intrinsic orbital angular momentum deviates from that of light without angular momentum ( σ = 0 $\sigma &#x00026;amp;amp;amp;amp;amp;amp;amp;amp;amp;equals; 0$ and = 0 $&#x00026;amp;amp;amp;amp;amp;amp;amp;amp;amp;ell; &#x00026;amp;amp;amp;amp;amp;amp;amp;amp;amp;equals; 0$ ) by an angle θ σ , 2 σ + $\left(\theta\right)_{\sigma , &#x00026;amp;amp;amp;amp;amp;amp;amp;amp;amp;ell;} \propto 2 \sigma &#x00026;amp;amp;amp;amp;amp;amp;amp;amp;amp;plus; &#x00026;amp;amp;amp;amp;amp;amp;amp;amp;amp;ell;$ . In particular, the contribution of spin σ to angle θ σ , $\left(\theta\right)_{\sigma , &#x00026;amp;amp;amp;amp;amp;amp;amp;amp;amp;ell;}$ is twice that of the intrinsic orbital angular momentum , highlighting their differing effects on light propagation in optical materials. Furthermore, angle θ σ , $\left(\theta\right)_{\sigma , &#x00026;amp;amp;amp;amp;amp;amp;amp;amp;amp;ell;}$ can potentially be observed experimentally, enhancing the understanding of the role of angular momentum in light propagation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
2.70%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信