{"title":"一类多项式阶无穷级数的线性无关判据","authors":"S. Kudo","doi":"10.1007/s10474-025-01548-w","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>q</i> be a Pisot or Salem number. Let <span>\\(f_j(x) \\quad (j=1,2,\\dots)\\)</span> be integer-valued polynomials of degree <span>\\(\\ge2\\)</span> with positive leading coefficients, and let <span>\\(\\{a_j (n)\\}_{n\\ge1} \\quad (j=1,2,\\dots)\\)</span> be sequences of algebraic integers in the field <span>\\(Q(q)\\)</span> with suitable growth conditions. In this paper, we investigate linear independence over <span>\\(Q(q)\\)</span> of the numbers</p><div><div><span>$$1,\\quad \\sum_{n=1}^{\\infty} \\frac{a_j (n)}{q^{f_j (n)}} \\quad (j=1,2,\\dots).$$</span></div></div><p> In particular, when <span>\\(a_j(n) \\quad (j=1,2,\\dots)\\)</span> are polynomials of <i>n</i>, we give a linear independence criterion for the above numbers.</p></div>","PeriodicalId":50894,"journal":{"name":"Acta Mathematica Hungarica","volume":"176 2","pages":"341 - 364"},"PeriodicalIF":0.6000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A linear independence criterion for certain infinite series with polynomial orders\",\"authors\":\"S. Kudo\",\"doi\":\"10.1007/s10474-025-01548-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <i>q</i> be a Pisot or Salem number. Let <span>\\\\(f_j(x) \\\\quad (j=1,2,\\\\dots)\\\\)</span> be integer-valued polynomials of degree <span>\\\\(\\\\ge2\\\\)</span> with positive leading coefficients, and let <span>\\\\(\\\\{a_j (n)\\\\}_{n\\\\ge1} \\\\quad (j=1,2,\\\\dots)\\\\)</span> be sequences of algebraic integers in the field <span>\\\\(Q(q)\\\\)</span> with suitable growth conditions. In this paper, we investigate linear independence over <span>\\\\(Q(q)\\\\)</span> of the numbers</p><div><div><span>$$1,\\\\quad \\\\sum_{n=1}^{\\\\infty} \\\\frac{a_j (n)}{q^{f_j (n)}} \\\\quad (j=1,2,\\\\dots).$$</span></div></div><p> In particular, when <span>\\\\(a_j(n) \\\\quad (j=1,2,\\\\dots)\\\\)</span> are polynomials of <i>n</i>, we give a linear independence criterion for the above numbers.</p></div>\",\"PeriodicalId\":50894,\"journal\":{\"name\":\"Acta Mathematica Hungarica\",\"volume\":\"176 2\",\"pages\":\"341 - 364\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Hungarica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10474-025-01548-w\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Hungarica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10474-025-01548-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
A linear independence criterion for certain infinite series with polynomial orders
Let q be a Pisot or Salem number. Let \(f_j(x) \quad (j=1,2,\dots)\) be integer-valued polynomials of degree \(\ge2\) with positive leading coefficients, and let \(\{a_j (n)\}_{n\ge1} \quad (j=1,2,\dots)\) be sequences of algebraic integers in the field \(Q(q)\) with suitable growth conditions. In this paper, we investigate linear independence over \(Q(q)\) of the numbers
期刊介绍:
Acta Mathematica Hungarica is devoted to publishing research articles of top quality in all areas of pure and applied mathematics as well as in theoretical computer science. The journal is published yearly in three volumes (two issues per volume, in total 6 issues) in both print and electronic formats. Acta Mathematica Hungarica (formerly Acta Mathematica Academiae Scientiarum Hungaricae) was founded in 1950 by the Hungarian Academy of Sciences.