{"title":"静压缩下可持续晶格结构的能量吸收","authors":"Sören Bieler, Kerstin Weinberg","doi":"10.1007/s11012-025-02003-4","DOIUrl":null,"url":null,"abstract":"<div><p>Lattice-like cellular materials, with their unique combination of lightweight, high strength, and good deformability, are promising for engineering applications. This paper investigates the energy-absorbing properties of four truss-lattice structures with two defined volume fractions of material in static compression experiments. The mass-specific energy absorption is derived. The specimens are manufactured by SLA printing of viscoelastic polymeric material. Sustainability implies that the lattice structures can withstand multiple loads and return to their original state after some recovery. Additionally, we present finite element simulations of our experiments and show that these calculations are, in principle, able to predict the different responses of the lattices. Like in the experiments, the truncated octahedron-lattice structure proved to be the most effective for energy absorption under strong compression.</p></div>","PeriodicalId":695,"journal":{"name":"Meccanica","volume":"60 8","pages":"2533 - 2547"},"PeriodicalIF":2.1000,"publicationDate":"2025-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11012-025-02003-4.pdf","citationCount":"0","resultStr":"{\"title\":\"Energy absorption of sustainable lattice structures under static compression\",\"authors\":\"Sören Bieler, Kerstin Weinberg\",\"doi\":\"10.1007/s11012-025-02003-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Lattice-like cellular materials, with their unique combination of lightweight, high strength, and good deformability, are promising for engineering applications. This paper investigates the energy-absorbing properties of four truss-lattice structures with two defined volume fractions of material in static compression experiments. The mass-specific energy absorption is derived. The specimens are manufactured by SLA printing of viscoelastic polymeric material. Sustainability implies that the lattice structures can withstand multiple loads and return to their original state after some recovery. Additionally, we present finite element simulations of our experiments and show that these calculations are, in principle, able to predict the different responses of the lattices. Like in the experiments, the truncated octahedron-lattice structure proved to be the most effective for energy absorption under strong compression.</p></div>\",\"PeriodicalId\":695,\"journal\":{\"name\":\"Meccanica\",\"volume\":\"60 8\",\"pages\":\"2533 - 2547\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11012-025-02003-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Meccanica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11012-025-02003-4\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meccanica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11012-025-02003-4","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
Energy absorption of sustainable lattice structures under static compression
Lattice-like cellular materials, with their unique combination of lightweight, high strength, and good deformability, are promising for engineering applications. This paper investigates the energy-absorbing properties of four truss-lattice structures with two defined volume fractions of material in static compression experiments. The mass-specific energy absorption is derived. The specimens are manufactured by SLA printing of viscoelastic polymeric material. Sustainability implies that the lattice structures can withstand multiple loads and return to their original state after some recovery. Additionally, we present finite element simulations of our experiments and show that these calculations are, in principle, able to predict the different responses of the lattices. Like in the experiments, the truncated octahedron-lattice structure proved to be the most effective for energy absorption under strong compression.
期刊介绍:
Meccanica focuses on the methodological framework shared by mechanical scientists when addressing theoretical or applied problems. Original papers address various aspects of mechanical and mathematical modeling, of solution, as well as of analysis of system behavior. The journal explores fundamental and applications issues in established areas of mechanics research as well as in emerging fields; contemporary research on general mechanics, solid and structural mechanics, fluid mechanics, and mechanics of machines; interdisciplinary fields between mechanics and other mathematical and engineering sciences; interaction of mechanics with dynamical systems, advanced materials, control and computation; electromechanics; biomechanics.
Articles include full length papers; topical overviews; brief notes; discussions and comments on published papers; book reviews; and an international calendar of conferences.
Meccanica, the official journal of the Italian Association of Theoretical and Applied Mechanics, was established in 1966.