氢环境下多晶材料位错-晶界侵彻模型及断裂行为研究

IF 2.7 3区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Hongda Yang, Jiding Zhang, Xiaoyu Jiang
{"title":"氢环境下多晶材料位错-晶界侵彻模型及断裂行为研究","authors":"Hongda Yang,&nbsp;Jiding Zhang,&nbsp;Xiaoyu Jiang","doi":"10.1007/s10338-025-00605-9","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a theoretical model of dislocation penetration through grain boundaries (GBs) in micro-crystalline materials, taking into account the interactions between dislocations and GBs in a hydrogen environment. It describes the pile-up and penetration of dislocations at GBs in poly-crystalline materials, and discusses the effects of grain size and GB disorientation angle on dislocation distribution within grains. The results reveal that decreasing grain size or increasing GB disorientation angle reduces the dislocation distribution region in grains. Moreover, the presence of hydrogen further decreases this distribution area, suggesting a reduction in dislocations emitted in a hydrogen environment. Consequently, this diminishes the shielding effect of slip band dislocations on crack growth and weakens the passivation ability of the crack, promoting increased crack propagation. The maximum reduction in the critical stress intensity factor for poly-crystalline materials in a hydrogen environment is approximately 16%. These results are significant for understanding the fracture behavior of poly-crystalline materials exposed to hydrogen.</p></div>","PeriodicalId":50892,"journal":{"name":"Acta Mechanica Solida Sinica","volume":"38 5","pages":"907 - 918"},"PeriodicalIF":2.7000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on Dislocation-Grain Boundary Penetration Model and Fracture Behavior of Poly-crystalline Materials in the Hydrogen Environment\",\"authors\":\"Hongda Yang,&nbsp;Jiding Zhang,&nbsp;Xiaoyu Jiang\",\"doi\":\"10.1007/s10338-025-00605-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents a theoretical model of dislocation penetration through grain boundaries (GBs) in micro-crystalline materials, taking into account the interactions between dislocations and GBs in a hydrogen environment. It describes the pile-up and penetration of dislocations at GBs in poly-crystalline materials, and discusses the effects of grain size and GB disorientation angle on dislocation distribution within grains. The results reveal that decreasing grain size or increasing GB disorientation angle reduces the dislocation distribution region in grains. Moreover, the presence of hydrogen further decreases this distribution area, suggesting a reduction in dislocations emitted in a hydrogen environment. Consequently, this diminishes the shielding effect of slip band dislocations on crack growth and weakens the passivation ability of the crack, promoting increased crack propagation. The maximum reduction in the critical stress intensity factor for poly-crystalline materials in a hydrogen environment is approximately 16%. These results are significant for understanding the fracture behavior of poly-crystalline materials exposed to hydrogen.</p></div>\",\"PeriodicalId\":50892,\"journal\":{\"name\":\"Acta Mechanica Solida Sinica\",\"volume\":\"38 5\",\"pages\":\"907 - 918\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mechanica Solida Sinica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10338-025-00605-9\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica Solida Sinica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10338-025-00605-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一个考虑氢环境中位错与晶界相互作用的微晶材料中位错穿透晶界的理论模型。描述了多晶材料中位错在晶内的堆积和渗透,并讨论了晶粒尺寸和晶内位错取向角对晶内位错分布的影响。结果表明,减小晶粒尺寸或增大GB位错角可减小晶粒中的位错分布区域。此外,氢的存在进一步减小了该分布区域,表明氢环境中释放的位错减少。这降低了滑移带位错对裂纹扩展的屏蔽作用,削弱了裂纹的钝化能力,促进了裂纹扩展的增加。在氢环境下,多晶材料的临界应力强度因子的最大降幅约为16%。这些结果对于理解多晶材料在氢气作用下的断裂行为具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study on Dislocation-Grain Boundary Penetration Model and Fracture Behavior of Poly-crystalline Materials in the Hydrogen Environment

This paper presents a theoretical model of dislocation penetration through grain boundaries (GBs) in micro-crystalline materials, taking into account the interactions between dislocations and GBs in a hydrogen environment. It describes the pile-up and penetration of dislocations at GBs in poly-crystalline materials, and discusses the effects of grain size and GB disorientation angle on dislocation distribution within grains. The results reveal that decreasing grain size or increasing GB disorientation angle reduces the dislocation distribution region in grains. Moreover, the presence of hydrogen further decreases this distribution area, suggesting a reduction in dislocations emitted in a hydrogen environment. Consequently, this diminishes the shielding effect of slip band dislocations on crack growth and weakens the passivation ability of the crack, promoting increased crack propagation. The maximum reduction in the critical stress intensity factor for poly-crystalline materials in a hydrogen environment is approximately 16%. These results are significant for understanding the fracture behavior of poly-crystalline materials exposed to hydrogen.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Mechanica Solida Sinica
Acta Mechanica Solida Sinica 物理-材料科学:综合
CiteScore
3.80
自引率
9.10%
发文量
1088
审稿时长
9 months
期刊介绍: Acta Mechanica Solida Sinica aims to become the best journal of solid mechanics in China and a worldwide well-known one in the field of mechanics, by providing original, perspective and even breakthrough theories and methods for the research on solid mechanics. The Journal is devoted to the publication of research papers in English in all fields of solid-state mechanics and its related disciplines in science, technology and engineering, with a balanced coverage on analytical, experimental, numerical and applied investigations. Articles, Short Communications, Discussions on previously published papers, and invitation-based Reviews are published bimonthly. The maximum length of an article is 30 pages, including equations, figures and tables
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信