加性数论中的若干问题。有限集合的集合的大小

IF 0.6 3区 数学 Q3 MATHEMATICS
M. B. Nathanson
{"title":"加性数论中的若干问题。有限集合的集合的大小","authors":"M. B. Nathanson","doi":"10.1007/s10474-025-01559-7","DOIUrl":null,"url":null,"abstract":"<div><p>In the study of sums of finite sets of integers, most attention has been paid to sets with small sumsets (Freiman's theorem and related work) and to sets with large sumsets (Sidon sets and <span>\\(B_h\\)</span>-sets). This paper focuses on the full range of sizes of <span>\\(h\\)</span>-fold sums of a set of <span>\\(k\\)</span> integers. Many new results and open problems are presented.</p></div>","PeriodicalId":50894,"journal":{"name":"Acta Mathematica Hungarica","volume":"176 2","pages":"498 - 521"},"PeriodicalIF":0.6000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Problems in additive number theory. VI: Sizes of sumsets of finite sets\",\"authors\":\"M. B. Nathanson\",\"doi\":\"10.1007/s10474-025-01559-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the study of sums of finite sets of integers, most attention has been paid to sets with small sumsets (Freiman's theorem and related work) and to sets with large sumsets (Sidon sets and <span>\\\\(B_h\\\\)</span>-sets). This paper focuses on the full range of sizes of <span>\\\\(h\\\\)</span>-fold sums of a set of <span>\\\\(k\\\\)</span> integers. Many new results and open problems are presented.</p></div>\",\"PeriodicalId\":50894,\"journal\":{\"name\":\"Acta Mathematica Hungarica\",\"volume\":\"176 2\",\"pages\":\"498 - 521\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Hungarica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10474-025-01559-7\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Hungarica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10474-025-01559-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在有限整数集的和的研究中,大多数注意力都集中在小集合(Freiman定理和相关工作)和大集合(Sidon集合和\(B_h\) -集合)上。本文研究了一组\(k\)整数的\(h\) -折叠和的全范围大小。提出了许多新的结果和尚未解决的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Problems in additive number theory. VI: Sizes of sumsets of finite sets

In the study of sums of finite sets of integers, most attention has been paid to sets with small sumsets (Freiman's theorem and related work) and to sets with large sumsets (Sidon sets and \(B_h\)-sets). This paper focuses on the full range of sizes of \(h\)-fold sums of a set of \(k\) integers. Many new results and open problems are presented.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
11.10%
发文量
77
审稿时长
4-8 weeks
期刊介绍: Acta Mathematica Hungarica is devoted to publishing research articles of top quality in all areas of pure and applied mathematics as well as in theoretical computer science. The journal is published yearly in three volumes (two issues per volume, in total 6 issues) in both print and electronic formats. Acta Mathematica Hungarica (formerly Acta Mathematica Academiae Scientiarum Hungaricae) was founded in 1950 by the Hungarian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信