{"title":"有机碳电极钙钛矿太阳能电池的研究进展","authors":"Zhikuan Lin, Zhen Xiong, Haijun Guo, Hairong Zhang, Mengkun Wang, Lian Xiong, Xinde Chen","doi":"10.1007/s42823-025-00935-1","DOIUrl":null,"url":null,"abstract":"<div><p>Carbon electrodes, renowned for their excellent moisture and air stability, present a compelling alternative to unstable hole transport materials and costly metal electrodes. In carbon electrode-based perovskite solar cells (C-PSCs), organic materials play a crucial role in optimizing the surface characteristics and electrochemical performance of carbon electrodes, thereby enhancing the photoelectric conversion efficiency. By incorporating organic material additives to modulate the pore structure and surface chemistry of carbon electrodes, the processes of photon absorption and electron transport can be effectively promoted, leading to an improvement in device performance. This article comprehensively reviews the latest research progress of organic C-PSCs, covering their device structures, working principles, as well as the modification methods, advantages, and application effects of organic materials in different layers of C-PSCs. Finally, the applications of in-situ characterization and first-principles calculations in this field are briefly introduced, providing theoretical and experimental support for in-depth research. Based on the above research and analysis, optimization strategies such as enhancing charge selectivity, improving the contact between the electrode and the perovskite layer, and enhancing the quality of the perovskite layer are proposed to drive the further development of organic C-PSCs.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":"35 5","pages":"1833 - 1860"},"PeriodicalIF":5.8000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research progress on perovskite solar cells based on organic carbon electrodes\",\"authors\":\"Zhikuan Lin, Zhen Xiong, Haijun Guo, Hairong Zhang, Mengkun Wang, Lian Xiong, Xinde Chen\",\"doi\":\"10.1007/s42823-025-00935-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Carbon electrodes, renowned for their excellent moisture and air stability, present a compelling alternative to unstable hole transport materials and costly metal electrodes. In carbon electrode-based perovskite solar cells (C-PSCs), organic materials play a crucial role in optimizing the surface characteristics and electrochemical performance of carbon electrodes, thereby enhancing the photoelectric conversion efficiency. By incorporating organic material additives to modulate the pore structure and surface chemistry of carbon electrodes, the processes of photon absorption and electron transport can be effectively promoted, leading to an improvement in device performance. This article comprehensively reviews the latest research progress of organic C-PSCs, covering their device structures, working principles, as well as the modification methods, advantages, and application effects of organic materials in different layers of C-PSCs. Finally, the applications of in-situ characterization and first-principles calculations in this field are briefly introduced, providing theoretical and experimental support for in-depth research. Based on the above research and analysis, optimization strategies such as enhancing charge selectivity, improving the contact between the electrode and the perovskite layer, and enhancing the quality of the perovskite layer are proposed to drive the further development of organic C-PSCs.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":506,\"journal\":{\"name\":\"Carbon Letters\",\"volume\":\"35 5\",\"pages\":\"1833 - 1860\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42823-025-00935-1\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42823-025-00935-1","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Research progress on perovskite solar cells based on organic carbon electrodes
Carbon electrodes, renowned for their excellent moisture and air stability, present a compelling alternative to unstable hole transport materials and costly metal electrodes. In carbon electrode-based perovskite solar cells (C-PSCs), organic materials play a crucial role in optimizing the surface characteristics and electrochemical performance of carbon electrodes, thereby enhancing the photoelectric conversion efficiency. By incorporating organic material additives to modulate the pore structure and surface chemistry of carbon electrodes, the processes of photon absorption and electron transport can be effectively promoted, leading to an improvement in device performance. This article comprehensively reviews the latest research progress of organic C-PSCs, covering their device structures, working principles, as well as the modification methods, advantages, and application effects of organic materials in different layers of C-PSCs. Finally, the applications of in-situ characterization and first-principles calculations in this field are briefly introduced, providing theoretical and experimental support for in-depth research. Based on the above research and analysis, optimization strategies such as enhancing charge selectivity, improving the contact between the electrode and the perovskite layer, and enhancing the quality of the perovskite layer are proposed to drive the further development of organic C-PSCs.
期刊介绍:
Carbon Letters aims to be a comprehensive journal with complete coverage of carbon materials and carbon-rich molecules. These materials range from, but are not limited to, diamond and graphite through chars, semicokes, mesophase substances, carbon fibers, carbon nanotubes, graphenes, carbon blacks, activated carbons, pyrolytic carbons, glass-like carbons, etc. Papers on the secondary production of new carbon and composite materials from the above mentioned various carbons are within the scope of the journal. Papers on organic substances, including coals, will be considered only if the research has close relation to the resulting carbon materials. Carbon Letters also seeks to keep abreast of new developments in their specialist fields and to unite in finding alternative energy solutions to current issues such as the greenhouse effect and the depletion of the ozone layer. The renewable energy basics, energy storage and conversion, solar energy, wind energy, water energy, nuclear energy, biomass energy, hydrogen production technology, and other clean energy technologies are also within the scope of the journal. Carbon Letters invites original reports of fundamental research in all branches of the theory and practice of carbon science and technology.