ChangSoon Han, Hasnain Yousuf, Alamgeer, Rafi Ur Rehman, Kyesoo Kim, Junsin Yi, Muhammad Quddamah Khokhar, Sangheon Park
{"title":"利用193nm ArF准分子激光通过低热激光触点打开提高光伏器件效率","authors":"ChangSoon Han, Hasnain Yousuf, Alamgeer, Rafi Ur Rehman, Kyesoo Kim, Junsin Yi, Muhammad Quddamah Khokhar, Sangheon Park","doi":"10.1007/s11664-025-12311-w","DOIUrl":null,"url":null,"abstract":"<div><p>The advancement of ultra-thin photovoltaic devices is often constrained by limitations in conventional pulse laser processing, such as irregular ablation profiles, debris generation, and narrow process windows resulting from Gaussian beam characteristics. These challenges lead to uneven energy distribution and thermal damage, compromising device performance. In this study, we present a novel approach utilizing a 193 nm ArF excimer laser for non-thermal laser contact opening (LCO) to improve energy uniformity and minimize heat-affected zones in 100-μm-thick, 6-inch single-crystal silicon solar cells. The excimer laser enables large-area, uniform ablation with reduced substrate damage, in contrast to traditional 1064 nm picosecond lasers. Comparative analysis demonstrated that the excimer-based LCO achieved a 1.04% increase in fill factor (from 78.92% to 79.96%) and a 0.35% improvement in power conversion efficiency (from 19.79% to 20.14%), along with a reduction in series resistance by 0.00054 Ω. These improvements are attributed to enhanced LCO width uniformity and edge definition. This work highlights the significant potential of excimer lasers for precision back-contact structuring in high-efficiency, thin-film photovoltaic technologies. Future work will further refine LCO parameters and explore broader applications in next-generation solar cell designs.</p></div>","PeriodicalId":626,"journal":{"name":"Journal of Electronic Materials","volume":"54 11","pages":"10002 - 10016"},"PeriodicalIF":2.5000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficiency Enhancement of Photovoltaic Devices via Low-Heat Laser Contact Opening Using a 193 nm ArF Excimer Laser\",\"authors\":\"ChangSoon Han, Hasnain Yousuf, Alamgeer, Rafi Ur Rehman, Kyesoo Kim, Junsin Yi, Muhammad Quddamah Khokhar, Sangheon Park\",\"doi\":\"10.1007/s11664-025-12311-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The advancement of ultra-thin photovoltaic devices is often constrained by limitations in conventional pulse laser processing, such as irregular ablation profiles, debris generation, and narrow process windows resulting from Gaussian beam characteristics. These challenges lead to uneven energy distribution and thermal damage, compromising device performance. In this study, we present a novel approach utilizing a 193 nm ArF excimer laser for non-thermal laser contact opening (LCO) to improve energy uniformity and minimize heat-affected zones in 100-μm-thick, 6-inch single-crystal silicon solar cells. The excimer laser enables large-area, uniform ablation with reduced substrate damage, in contrast to traditional 1064 nm picosecond lasers. Comparative analysis demonstrated that the excimer-based LCO achieved a 1.04% increase in fill factor (from 78.92% to 79.96%) and a 0.35% improvement in power conversion efficiency (from 19.79% to 20.14%), along with a reduction in series resistance by 0.00054 Ω. These improvements are attributed to enhanced LCO width uniformity and edge definition. This work highlights the significant potential of excimer lasers for precision back-contact structuring in high-efficiency, thin-film photovoltaic technologies. Future work will further refine LCO parameters and explore broader applications in next-generation solar cell designs.</p></div>\",\"PeriodicalId\":626,\"journal\":{\"name\":\"Journal of Electronic Materials\",\"volume\":\"54 11\",\"pages\":\"10002 - 10016\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electronic Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11664-025-12311-w\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Materials","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11664-025-12311-w","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Efficiency Enhancement of Photovoltaic Devices via Low-Heat Laser Contact Opening Using a 193 nm ArF Excimer Laser
The advancement of ultra-thin photovoltaic devices is often constrained by limitations in conventional pulse laser processing, such as irregular ablation profiles, debris generation, and narrow process windows resulting from Gaussian beam characteristics. These challenges lead to uneven energy distribution and thermal damage, compromising device performance. In this study, we present a novel approach utilizing a 193 nm ArF excimer laser for non-thermal laser contact opening (LCO) to improve energy uniformity and minimize heat-affected zones in 100-μm-thick, 6-inch single-crystal silicon solar cells. The excimer laser enables large-area, uniform ablation with reduced substrate damage, in contrast to traditional 1064 nm picosecond lasers. Comparative analysis demonstrated that the excimer-based LCO achieved a 1.04% increase in fill factor (from 78.92% to 79.96%) and a 0.35% improvement in power conversion efficiency (from 19.79% to 20.14%), along with a reduction in series resistance by 0.00054 Ω. These improvements are attributed to enhanced LCO width uniformity and edge definition. This work highlights the significant potential of excimer lasers for precision back-contact structuring in high-efficiency, thin-film photovoltaic technologies. Future work will further refine LCO parameters and explore broader applications in next-generation solar cell designs.
期刊介绍:
The Journal of Electronic Materials (JEM) reports monthly on the science and technology of electronic materials, while examining new applications for semiconductors, magnetic alloys, dielectrics, nanoscale materials, and photonic materials. The journal welcomes articles on methods for preparing and evaluating the chemical, physical, electronic, and optical properties of these materials. Specific areas of interest are materials for state-of-the-art transistors, nanotechnology, electronic packaging, detectors, emitters, metallization, superconductivity, and energy applications.
Review papers on current topics enable individuals in the field of electronics to keep abreast of activities in areas peripheral to their own. JEM also selects papers from conferences such as the Electronic Materials Conference, the U.S. Workshop on the Physics and Chemistry of II-VI Materials, and the International Conference on Thermoelectrics. It benefits both specialists and non-specialists in the electronic materials field.
A journal of The Minerals, Metals & Materials Society.