Vyacheslav N. Burlayenko, Tomasz Sadowski, Liviu Marsavina
{"title":"变截面功能梯度碳纳米管增强梁的自由振动分析","authors":"Vyacheslav N. Burlayenko, Tomasz Sadowski, Liviu Marsavina","doi":"10.1007/s11012-025-01952-0","DOIUrl":null,"url":null,"abstract":"<div><p>The paper studies the free vibration of carbon nanotube-reinforced composite (CNTRC) beams with variable cross-sections. The carbon nanotubes embedded in a polymeric matrix are assumed to be functionally graded (FG) across the beam’s thickness, with their material properties determined using the rule of mixtures. Various CNT distribution patterns and cross-sectional variation profiles are considered. The study employs Timoshenko beam theory, deriving the governing equations via Hamilton’s principle. These differential equations with variable coefficients are solved using the differential transform method (DTM), which is formulated as a unified eigenvalue problem applicable to various boundary conditions. The computed results are validated against available literature to ensure accuracy and reliability. Subsequently, a comprehensive parametric study examines the influence of geometrical and material parameters on the vibration behavior of FG-CNTRC beams. The findings reveal that natural frequencies are significantly affected by taper parameters, CNT content, and nanotube distribution patterns. Finally, the study identifies the CNT distributions that offer the most favorable vibration characteristics.</p></div>","PeriodicalId":695,"journal":{"name":"Meccanica","volume":"60 8","pages":"2361 - 2388"},"PeriodicalIF":2.1000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Free vibration analysis of functionally graded carbon nanotube-reinforced beams with variable cross-section using the differential transform method\",\"authors\":\"Vyacheslav N. Burlayenko, Tomasz Sadowski, Liviu Marsavina\",\"doi\":\"10.1007/s11012-025-01952-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The paper studies the free vibration of carbon nanotube-reinforced composite (CNTRC) beams with variable cross-sections. The carbon nanotubes embedded in a polymeric matrix are assumed to be functionally graded (FG) across the beam’s thickness, with their material properties determined using the rule of mixtures. Various CNT distribution patterns and cross-sectional variation profiles are considered. The study employs Timoshenko beam theory, deriving the governing equations via Hamilton’s principle. These differential equations with variable coefficients are solved using the differential transform method (DTM), which is formulated as a unified eigenvalue problem applicable to various boundary conditions. The computed results are validated against available literature to ensure accuracy and reliability. Subsequently, a comprehensive parametric study examines the influence of geometrical and material parameters on the vibration behavior of FG-CNTRC beams. The findings reveal that natural frequencies are significantly affected by taper parameters, CNT content, and nanotube distribution patterns. Finally, the study identifies the CNT distributions that offer the most favorable vibration characteristics.</p></div>\",\"PeriodicalId\":695,\"journal\":{\"name\":\"Meccanica\",\"volume\":\"60 8\",\"pages\":\"2361 - 2388\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Meccanica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11012-025-01952-0\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meccanica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11012-025-01952-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
Free vibration analysis of functionally graded carbon nanotube-reinforced beams with variable cross-section using the differential transform method
The paper studies the free vibration of carbon nanotube-reinforced composite (CNTRC) beams with variable cross-sections. The carbon nanotubes embedded in a polymeric matrix are assumed to be functionally graded (FG) across the beam’s thickness, with their material properties determined using the rule of mixtures. Various CNT distribution patterns and cross-sectional variation profiles are considered. The study employs Timoshenko beam theory, deriving the governing equations via Hamilton’s principle. These differential equations with variable coefficients are solved using the differential transform method (DTM), which is formulated as a unified eigenvalue problem applicable to various boundary conditions. The computed results are validated against available literature to ensure accuracy and reliability. Subsequently, a comprehensive parametric study examines the influence of geometrical and material parameters on the vibration behavior of FG-CNTRC beams. The findings reveal that natural frequencies are significantly affected by taper parameters, CNT content, and nanotube distribution patterns. Finally, the study identifies the CNT distributions that offer the most favorable vibration characteristics.
期刊介绍:
Meccanica focuses on the methodological framework shared by mechanical scientists when addressing theoretical or applied problems. Original papers address various aspects of mechanical and mathematical modeling, of solution, as well as of analysis of system behavior. The journal explores fundamental and applications issues in established areas of mechanics research as well as in emerging fields; contemporary research on general mechanics, solid and structural mechanics, fluid mechanics, and mechanics of machines; interdisciplinary fields between mechanics and other mathematical and engineering sciences; interaction of mechanics with dynamical systems, advanced materials, control and computation; electromechanics; biomechanics.
Articles include full length papers; topical overviews; brief notes; discussions and comments on published papers; book reviews; and an international calendar of conferences.
Meccanica, the official journal of the Italian Association of Theoretical and Applied Mechanics, was established in 1966.