函数的Kuratowski扩展定理的近似形式

IF 0.6 3区 数学 Q3 MATHEMATICS
W. Sieg
{"title":"函数的Kuratowski扩展定理的近似形式","authors":"W. Sieg","doi":"10.1007/s10474-025-01550-2","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(\\Omega\\)</span> be a perfectly normal topological space, let <span>\\(A\\)</span> be a non-empty <span>\\(G_\\delta\\)</span>-subset of <span>\\(\\Omega\\)</span> and let <span>\\(\\mathscr{B}_1(A)\\)</span> denote the space of all functions <span>\\(A\\to\\mathbb {R}\\)</span> of Baire-one class on <span>\\(A\\)</span>.\nLet also <span>\\(\\|\\cdot\\|_\\infty\\)</span> be the supremum norm. The symbol <span>\\(\\chi_A\\)</span> stands for the characteristic function of <span>\\(A\\)</span>. We prove that for every bounded function <span>\\(f\\in\\mathscr {B}_1(A)\\)</span> there is a sequence <span>\\((H_n)\\)</span>\nof both <span>\\(F_\\sigma\\)</span>- and <span>\\(G_\\delta\\)</span>-subset of <span>\\(\\Omega\\)</span> such that the function <span>\\(\\overline{f}\\colon\\Omega\\to\\mathbb {R}\\)</span> given by the uniformly convergent series on <span>\\(\\Omega\\)</span> with the formula:\n<span>\\( \\overline{f}:=c\\sum_{n=0}^\\infty (\\frac{2}{3})^{n+1}(\\frac{1}{2}-\\chi_{H_n}) \\)</span>\nextends <span>\\(f\\)</span> with <span>\\(\\overline{f}\\in{\\mathscr{B}}_1(\\Omega)\\)</span>, <span>\\(c=\\sup_{x\\in\\Omega}\\lvert{\\overline{f}(x)}\\rvert\\)</span> and the condition <span>\\((\\triangle)\\)</span> of the form:\n<span>\\(\\|f\\|_\\infty=\\|\\overline{f}\\|_\\infty\\)</span>.\nWe apply the above series to obtain an extension of <span>\\(f\\)</span> positive to <span>\\(\\overline{f}\\)</span> positive with the condition <span>\\((\\triangle)\\)</span>. A similar technique allows us to obtain an extension of Baire-alpha function\non <span>\\(A\\)</span> to Baire-alpha function on <span>\\(\\Omega\\)</span>.\n</p></div>","PeriodicalId":50894,"journal":{"name":"Acta Mathematica Hungarica","volume":"176 2","pages":"313 - 320"},"PeriodicalIF":0.6000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10474-025-01550-2.pdf","citationCount":"0","resultStr":"{\"title\":\"An approximation form of the Kuratowski Extension Theorem for Baire-alpha functions\",\"authors\":\"W. Sieg\",\"doi\":\"10.1007/s10474-025-01550-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\(\\\\Omega\\\\)</span> be a perfectly normal topological space, let <span>\\\\(A\\\\)</span> be a non-empty <span>\\\\(G_\\\\delta\\\\)</span>-subset of <span>\\\\(\\\\Omega\\\\)</span> and let <span>\\\\(\\\\mathscr{B}_1(A)\\\\)</span> denote the space of all functions <span>\\\\(A\\\\to\\\\mathbb {R}\\\\)</span> of Baire-one class on <span>\\\\(A\\\\)</span>.\\nLet also <span>\\\\(\\\\|\\\\cdot\\\\|_\\\\infty\\\\)</span> be the supremum norm. The symbol <span>\\\\(\\\\chi_A\\\\)</span> stands for the characteristic function of <span>\\\\(A\\\\)</span>. We prove that for every bounded function <span>\\\\(f\\\\in\\\\mathscr {B}_1(A)\\\\)</span> there is a sequence <span>\\\\((H_n)\\\\)</span>\\nof both <span>\\\\(F_\\\\sigma\\\\)</span>- and <span>\\\\(G_\\\\delta\\\\)</span>-subset of <span>\\\\(\\\\Omega\\\\)</span> such that the function <span>\\\\(\\\\overline{f}\\\\colon\\\\Omega\\\\to\\\\mathbb {R}\\\\)</span> given by the uniformly convergent series on <span>\\\\(\\\\Omega\\\\)</span> with the formula:\\n<span>\\\\( \\\\overline{f}:=c\\\\sum_{n=0}^\\\\infty (\\\\frac{2}{3})^{n+1}(\\\\frac{1}{2}-\\\\chi_{H_n}) \\\\)</span>\\nextends <span>\\\\(f\\\\)</span> with <span>\\\\(\\\\overline{f}\\\\in{\\\\mathscr{B}}_1(\\\\Omega)\\\\)</span>, <span>\\\\(c=\\\\sup_{x\\\\in\\\\Omega}\\\\lvert{\\\\overline{f}(x)}\\\\rvert\\\\)</span> and the condition <span>\\\\((\\\\triangle)\\\\)</span> of the form:\\n<span>\\\\(\\\\|f\\\\|_\\\\infty=\\\\|\\\\overline{f}\\\\|_\\\\infty\\\\)</span>.\\nWe apply the above series to obtain an extension of <span>\\\\(f\\\\)</span> positive to <span>\\\\(\\\\overline{f}\\\\)</span> positive with the condition <span>\\\\((\\\\triangle)\\\\)</span>. A similar technique allows us to obtain an extension of Baire-alpha function\\non <span>\\\\(A\\\\)</span> to Baire-alpha function on <span>\\\\(\\\\Omega\\\\)</span>.\\n</p></div>\",\"PeriodicalId\":50894,\"journal\":{\"name\":\"Acta Mathematica Hungarica\",\"volume\":\"176 2\",\"pages\":\"313 - 320\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10474-025-01550-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Hungarica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10474-025-01550-2\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Hungarica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10474-025-01550-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让 \(\Omega\) 是一个完全正规拓扑空间,令 \(A\) 做一个非空的人 \(G_\delta\)-子集 \(\Omega\) 让 \(\mathscr{B}_1(A)\) 表示所有函数的空间 \(A\to\mathbb {R}\) 一年级的学生 \(A\).让我们 \(\|\cdot\|_\infty\) 成为最高标准。符号 \(\chi_A\) 表示的特征函数 \(A\). 我们证明了对于每一个有界函数 \(f\in\mathscr {B}_1(A)\) 这是一个序列 \((H_n)\)两者都有 \(F_\sigma\)-和 \(G_\delta\)-子集 \(\Omega\) 使得函数 \(\overline{f}\colon\Omega\to\mathbb {R}\) 由上的一致收敛级数给出 \(\Omega\) 公式是:\( \overline{f}:=c\sum_{n=0}^\infty (\frac{2}{3})^{n+1}(\frac{1}{2}-\chi_{H_n}) \)扩展 \(f\) 有 \(\overline{f}\in{\mathscr{B}}_1(\Omega)\), \(c=\sup_{x\in\Omega}\lvert{\overline{f}(x)}\rvert\) 条件是 \((\triangle)\) 形式的:\(\|f\|_\infty=\|\overline{f}\|_\infty\).我们应用上面的级数得到 \(f\) 积极的 \(\overline{f}\) 条件是肯定的 \((\triangle)\). 一个类似的技术允许我们得到Baire-alpha函数的扩展 \(A\) 到bair -alpha函数 \(\Omega\).
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An approximation form of the Kuratowski Extension Theorem for Baire-alpha functions

Let \(\Omega\) be a perfectly normal topological space, let \(A\) be a non-empty \(G_\delta\)-subset of \(\Omega\) and let \(\mathscr{B}_1(A)\) denote the space of all functions \(A\to\mathbb {R}\) of Baire-one class on \(A\). Let also \(\|\cdot\|_\infty\) be the supremum norm. The symbol \(\chi_A\) stands for the characteristic function of \(A\). We prove that for every bounded function \(f\in\mathscr {B}_1(A)\) there is a sequence \((H_n)\) of both \(F_\sigma\)- and \(G_\delta\)-subset of \(\Omega\) such that the function \(\overline{f}\colon\Omega\to\mathbb {R}\) given by the uniformly convergent series on \(\Omega\) with the formula: \( \overline{f}:=c\sum_{n=0}^\infty (\frac{2}{3})^{n+1}(\frac{1}{2}-\chi_{H_n}) \) extends \(f\) with \(\overline{f}\in{\mathscr{B}}_1(\Omega)\), \(c=\sup_{x\in\Omega}\lvert{\overline{f}(x)}\rvert\) and the condition \((\triangle)\) of the form: \(\|f\|_\infty=\|\overline{f}\|_\infty\). We apply the above series to obtain an extension of \(f\) positive to \(\overline{f}\) positive with the condition \((\triangle)\). A similar technique allows us to obtain an extension of Baire-alpha function on \(A\) to Baire-alpha function on \(\Omega\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
11.10%
发文量
77
审稿时长
4-8 weeks
期刊介绍: Acta Mathematica Hungarica is devoted to publishing research articles of top quality in all areas of pure and applied mathematics as well as in theoretical computer science. The journal is published yearly in three volumes (two issues per volume, in total 6 issues) in both print and electronic formats. Acta Mathematica Hungarica (formerly Acta Mathematica Academiae Scientiarum Hungaricae) was founded in 1950 by the Hungarian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信