{"title":"基于Timoshenko模型的旋转功能梯度纳米管输送流体的非局部热机械振动","authors":"Yao Chen, Xiao-Dong Yang, Feng Liang","doi":"10.1007/s10338-024-00574-5","DOIUrl":null,"url":null,"abstract":"<div><p>Based on the Timoshenko beam theory, this paper proposes a nonlocal bi-gyroscopic model for spinning functionally graded (FG) nanotubes conveying fluid, and the thermal–mechanical vibration and stability of such composite nanostructures under small scale, rotor, and temperature coupling effects are investigated. The nanotube is composed of functionally graded materials (FGMs), and different volume fraction functions are utilized to control the distribution of material properties. Eringen’s nonlocal elasticity theory and Hamilton’s principle are applied for dynamical modeling, and the forward and backward precession frequencies as well as 3D mode configurations of the nanotube are obtained. By conducting dimensionless analysis, it is found that compared to the Timoshenko nano-beam model, the conventional Euler–Bernoulli (E-B) model holds the same flutter frequency in the supercritical region, while it usually overestimates the higher-order precession frequencies. The nonlocal, thermal, and flowing effects all can lead to buckling or different kinds of coupled flutter in the system. The material distribution of the P-type FGM nanotube can also induce coupled flutter, while that of the S-type FGM nanotube has no impact on the stability of the system. This paper is expected to provide a theoretical foundation for the design of motional composite nanodevices.</p></div>","PeriodicalId":50892,"journal":{"name":"Acta Mechanica Solida Sinica","volume":"38 5","pages":"776 - 788"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlocal Thermal–Mechanical Vibration of Spinning Functionally Graded Nanotubes Conveying Fluid Based on the Timoshenko Model\",\"authors\":\"Yao Chen, Xiao-Dong Yang, Feng Liang\",\"doi\":\"10.1007/s10338-024-00574-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Based on the Timoshenko beam theory, this paper proposes a nonlocal bi-gyroscopic model for spinning functionally graded (FG) nanotubes conveying fluid, and the thermal–mechanical vibration and stability of such composite nanostructures under small scale, rotor, and temperature coupling effects are investigated. The nanotube is composed of functionally graded materials (FGMs), and different volume fraction functions are utilized to control the distribution of material properties. Eringen’s nonlocal elasticity theory and Hamilton’s principle are applied for dynamical modeling, and the forward and backward precession frequencies as well as 3D mode configurations of the nanotube are obtained. By conducting dimensionless analysis, it is found that compared to the Timoshenko nano-beam model, the conventional Euler–Bernoulli (E-B) model holds the same flutter frequency in the supercritical region, while it usually overestimates the higher-order precession frequencies. The nonlocal, thermal, and flowing effects all can lead to buckling or different kinds of coupled flutter in the system. The material distribution of the P-type FGM nanotube can also induce coupled flutter, while that of the S-type FGM nanotube has no impact on the stability of the system. This paper is expected to provide a theoretical foundation for the design of motional composite nanodevices.</p></div>\",\"PeriodicalId\":50892,\"journal\":{\"name\":\"Acta Mechanica Solida Sinica\",\"volume\":\"38 5\",\"pages\":\"776 - 788\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mechanica Solida Sinica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10338-024-00574-5\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica Solida Sinica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10338-024-00574-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Nonlocal Thermal–Mechanical Vibration of Spinning Functionally Graded Nanotubes Conveying Fluid Based on the Timoshenko Model
Based on the Timoshenko beam theory, this paper proposes a nonlocal bi-gyroscopic model for spinning functionally graded (FG) nanotubes conveying fluid, and the thermal–mechanical vibration and stability of such composite nanostructures under small scale, rotor, and temperature coupling effects are investigated. The nanotube is composed of functionally graded materials (FGMs), and different volume fraction functions are utilized to control the distribution of material properties. Eringen’s nonlocal elasticity theory and Hamilton’s principle are applied for dynamical modeling, and the forward and backward precession frequencies as well as 3D mode configurations of the nanotube are obtained. By conducting dimensionless analysis, it is found that compared to the Timoshenko nano-beam model, the conventional Euler–Bernoulli (E-B) model holds the same flutter frequency in the supercritical region, while it usually overestimates the higher-order precession frequencies. The nonlocal, thermal, and flowing effects all can lead to buckling or different kinds of coupled flutter in the system. The material distribution of the P-type FGM nanotube can also induce coupled flutter, while that of the S-type FGM nanotube has no impact on the stability of the system. This paper is expected to provide a theoretical foundation for the design of motional composite nanodevices.
期刊介绍:
Acta Mechanica Solida Sinica aims to become the best journal of solid mechanics in China and a worldwide well-known one in the field of mechanics, by providing original, perspective and even breakthrough theories and methods for the research on solid mechanics.
The Journal is devoted to the publication of research papers in English in all fields of solid-state mechanics and its related disciplines in science, technology and engineering, with a balanced coverage on analytical, experimental, numerical and applied investigations. Articles, Short Communications, Discussions on previously published papers, and invitation-based Reviews are published bimonthly. The maximum length of an article is 30 pages, including equations, figures and tables