Ishioma Laurene Egun, Jiankun Hu, Nnanake-Abasi O. Offiong, Edidiong S. Akwaowo, Ekemini S. Essien, Yang Hou, Zhengfei Chen
{"title":"将废轮胎转化为多孔碳,以实现性能增强的各种应用","authors":"Ishioma Laurene Egun, Jiankun Hu, Nnanake-Abasi O. Offiong, Edidiong S. Akwaowo, Ekemini S. Essien, Yang Hou, Zhengfei Chen","doi":"10.1007/s42823-025-00965-9","DOIUrl":null,"url":null,"abstract":"<div><p>Rapid accumulation of waste tires from automobile industries across the globe poses significant environmental challenges due to their non-biodegradability, complex chemical composition and current disposal techniques. Thus, there is an urgent need to consider recycling and transformation of these waste tires into functional materials while promoting the circular economy and environmental sustainability. Recent advancements in material science research have highlighted the potential of converting waste tires into valuable porous carbon materials based on their rich carbon polymeric composition. Among the various conversion techniques, carbonization and activation have been shown to yield microporous, mesoporous and macroporous carbon with a large specific surface area up to 2450 m<sup>2</sup>g<sup>−1</sup> with doped heteroatoms (P, B, N and O) that enhances its surface chemistry in diverse applications. Thus, this review looks to investigate various processes involved in converting waste tires into high-performance porous carbon for electrocatalysis, adsorbents, catalyst support, and electrodes for energy storage devices. It also highlights the recent trend of tire compositions, tire chemistry in terms of vulcanization and devulcanization towards a greener economy. Additionally, it proposes future research directions to enhance the viability of waste tire-derived porous carbon materials.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":"35 5","pages":"1955 - 1980"},"PeriodicalIF":5.8000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conversion of waste tires to porous carbon towards diverse applications with enhanced performance\",\"authors\":\"Ishioma Laurene Egun, Jiankun Hu, Nnanake-Abasi O. Offiong, Edidiong S. Akwaowo, Ekemini S. Essien, Yang Hou, Zhengfei Chen\",\"doi\":\"10.1007/s42823-025-00965-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Rapid accumulation of waste tires from automobile industries across the globe poses significant environmental challenges due to their non-biodegradability, complex chemical composition and current disposal techniques. Thus, there is an urgent need to consider recycling and transformation of these waste tires into functional materials while promoting the circular economy and environmental sustainability. Recent advancements in material science research have highlighted the potential of converting waste tires into valuable porous carbon materials based on their rich carbon polymeric composition. Among the various conversion techniques, carbonization and activation have been shown to yield microporous, mesoporous and macroporous carbon with a large specific surface area up to 2450 m<sup>2</sup>g<sup>−1</sup> with doped heteroatoms (P, B, N and O) that enhances its surface chemistry in diverse applications. Thus, this review looks to investigate various processes involved in converting waste tires into high-performance porous carbon for electrocatalysis, adsorbents, catalyst support, and electrodes for energy storage devices. It also highlights the recent trend of tire compositions, tire chemistry in terms of vulcanization and devulcanization towards a greener economy. Additionally, it proposes future research directions to enhance the viability of waste tire-derived porous carbon materials.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":506,\"journal\":{\"name\":\"Carbon Letters\",\"volume\":\"35 5\",\"pages\":\"1955 - 1980\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42823-025-00965-9\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42823-025-00965-9","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Conversion of waste tires to porous carbon towards diverse applications with enhanced performance
Rapid accumulation of waste tires from automobile industries across the globe poses significant environmental challenges due to their non-biodegradability, complex chemical composition and current disposal techniques. Thus, there is an urgent need to consider recycling and transformation of these waste tires into functional materials while promoting the circular economy and environmental sustainability. Recent advancements in material science research have highlighted the potential of converting waste tires into valuable porous carbon materials based on their rich carbon polymeric composition. Among the various conversion techniques, carbonization and activation have been shown to yield microporous, mesoporous and macroporous carbon with a large specific surface area up to 2450 m2g−1 with doped heteroatoms (P, B, N and O) that enhances its surface chemistry in diverse applications. Thus, this review looks to investigate various processes involved in converting waste tires into high-performance porous carbon for electrocatalysis, adsorbents, catalyst support, and electrodes for energy storage devices. It also highlights the recent trend of tire compositions, tire chemistry in terms of vulcanization and devulcanization towards a greener economy. Additionally, it proposes future research directions to enhance the viability of waste tire-derived porous carbon materials.
期刊介绍:
Carbon Letters aims to be a comprehensive journal with complete coverage of carbon materials and carbon-rich molecules. These materials range from, but are not limited to, diamond and graphite through chars, semicokes, mesophase substances, carbon fibers, carbon nanotubes, graphenes, carbon blacks, activated carbons, pyrolytic carbons, glass-like carbons, etc. Papers on the secondary production of new carbon and composite materials from the above mentioned various carbons are within the scope of the journal. Papers on organic substances, including coals, will be considered only if the research has close relation to the resulting carbon materials. Carbon Letters also seeks to keep abreast of new developments in their specialist fields and to unite in finding alternative energy solutions to current issues such as the greenhouse effect and the depletion of the ozone layer. The renewable energy basics, energy storage and conversion, solar energy, wind energy, water energy, nuclear energy, biomass energy, hydrogen production technology, and other clean energy technologies are also within the scope of the journal. Carbon Letters invites original reports of fundamental research in all branches of the theory and practice of carbon science and technology.