一类漂移拉普拉斯方程的最小化问题及对偶结果

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
Morteza Pol, Mohsen Zivari-Rezapour
{"title":"一类漂移拉普拉斯方程的最小化问题及对偶结果","authors":"Morteza Pol,&nbsp;Mohsen Zivari-Rezapour","doi":"10.1007/s10255-025-0018-5","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider a Dirichlet-Laplacian with a drift problem. We prove existence of weak solutions of it on the Nehari manifold. Then, we show that the associated energy functional has a minimizer on a rearrangement class generated by a determined function. Finally, we prove a duality theorem for this boundary value problem.</p></div>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":"41 4","pages":"940 - 949"},"PeriodicalIF":0.9000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Minimization Problem and a Duality Result Related to a Drifting Laplacian Equation\",\"authors\":\"Morteza Pol,&nbsp;Mohsen Zivari-Rezapour\",\"doi\":\"10.1007/s10255-025-0018-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we consider a Dirichlet-Laplacian with a drift problem. We prove existence of weak solutions of it on the Nehari manifold. Then, we show that the associated energy functional has a minimizer on a rearrangement class generated by a determined function. Finally, we prove a duality theorem for this boundary value problem.</p></div>\",\"PeriodicalId\":6951,\"journal\":{\"name\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"volume\":\"41 4\",\"pages\":\"940 - 949\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10255-025-0018-5\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematicae Applicatae Sinica, English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-025-0018-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑一个带有漂移问题的Dirichlet-Laplacian。在Nehari流形上证明了它的弱解的存在性。然后,我们证明了关联能量泛函在由确定函数生成的重排类上具有最小值。最后,我们证明了该边值问题的对偶定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Minimization Problem and a Duality Result Related to a Drifting Laplacian Equation

In this paper, we consider a Dirichlet-Laplacian with a drift problem. We prove existence of weak solutions of it on the Nehari manifold. Then, we show that the associated energy functional has a minimizer on a rearrangement class generated by a determined function. Finally, we prove a duality theorem for this boundary value problem.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
70
审稿时长
3.0 months
期刊介绍: Acta Mathematicae Applicatae Sinica (English Series) is a quarterly journal established by the Chinese Mathematical Society. The journal publishes high quality research papers from all branches of applied mathematics, and particularly welcomes those from partial differential equations, computational mathematics, applied probability, mathematical finance, statistics, dynamical systems, optimization and management science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信