{"title":"两个Ramsey-Turán小独立数的个数","authors":"Xin-yu Hu, Qi-zhong Lin","doi":"10.1007/s10255-024-1071-1","DOIUrl":null,"url":null,"abstract":"<div><p>Given a forbidden graph <i>H</i> and a function <i>f</i>(<i>n</i>), the Ramsey-Turán number <b>RT</b> (<i>n, H, f</i> (<i>n</i>)) is the maximum number of edges of an <i>H</i>-free graph on <i>n</i> vertices with independence number less than <i>f</i> (<i>n</i>). For graphs <i>G</i> and <i>H</i>, the Ramsey number <i>R</i>(<i>G, H</i>) is the minimum integer <i>N</i> such that any red/blue edge coloring of the complete graph <i>K</i><sub><i>N</i></sub> contains either a red <i>G</i> or a blue <i>H</i>. Denote <i>G</i> + <i>H</i> by the join graph obtained from disjoint <i>G</i> and <i>H</i> by adding all edges between them completely. We first show that for any fixed graph <i>H</i>, if there are two constants <i>p</i>:= <i>p</i>(<i>H</i>) > 0 and <i>q</i>:= <i>q</i>(<i>H</i>) > 1 such that <span>\\(R({H,{K_n}}) \\le {{p{n^q}} \\over {{{({\\log n})}^{q - 1}}}}\\)</span>, then <span>\\(\\mathbf{RT}({n,{K_2} + H,o({{n^{{1 \\over q}}}{{({\\log n})}^{1 - {1 \\over q}}}})}) = o({{n^2}})\\)</span>, which extends several previous results. Moreover, we show that for any fixed forest <i>F</i> of order <i>k</i> ≥ 3, and for any 0 < <i>δ</i> < 1 and sufficiently large <i>n</i></p><div><div><span>$${\\mathbf{RT}}({n,F + F,{n^\\delta}}) \\le {n^{2 - ({1 - \\delta})/\\lceil {{{({k - 1})({2 - \\delta})} \\over {1 - \\delta}}} \\rceil}}.$$</span></div></div><p>As a corollary, we have an upper bound for <b>RT</b>(<i>n, K</i><sub>2,2,2</sub>, <i>n</i><sup><i>δ</i></sup>) for any 0 < <i>δ</i> < 1.</p></div>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":"41 4","pages":"1011 - 1017"},"PeriodicalIF":0.9000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two Ramsey-Turán Numbers of Small Independence Numbers\",\"authors\":\"Xin-yu Hu, Qi-zhong Lin\",\"doi\":\"10.1007/s10255-024-1071-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Given a forbidden graph <i>H</i> and a function <i>f</i>(<i>n</i>), the Ramsey-Turán number <b>RT</b> (<i>n, H, f</i> (<i>n</i>)) is the maximum number of edges of an <i>H</i>-free graph on <i>n</i> vertices with independence number less than <i>f</i> (<i>n</i>). For graphs <i>G</i> and <i>H</i>, the Ramsey number <i>R</i>(<i>G, H</i>) is the minimum integer <i>N</i> such that any red/blue edge coloring of the complete graph <i>K</i><sub><i>N</i></sub> contains either a red <i>G</i> or a blue <i>H</i>. Denote <i>G</i> + <i>H</i> by the join graph obtained from disjoint <i>G</i> and <i>H</i> by adding all edges between them completely. We first show that for any fixed graph <i>H</i>, if there are two constants <i>p</i>:= <i>p</i>(<i>H</i>) > 0 and <i>q</i>:= <i>q</i>(<i>H</i>) > 1 such that <span>\\\\(R({H,{K_n}}) \\\\le {{p{n^q}} \\\\over {{{({\\\\log n})}^{q - 1}}}}\\\\)</span>, then <span>\\\\(\\\\mathbf{RT}({n,{K_2} + H,o({{n^{{1 \\\\over q}}}{{({\\\\log n})}^{1 - {1 \\\\over q}}}})}) = o({{n^2}})\\\\)</span>, which extends several previous results. Moreover, we show that for any fixed forest <i>F</i> of order <i>k</i> ≥ 3, and for any 0 < <i>δ</i> < 1 and sufficiently large <i>n</i></p><div><div><span>$${\\\\mathbf{RT}}({n,F + F,{n^\\\\delta}}) \\\\le {n^{2 - ({1 - \\\\delta})/\\\\lceil {{{({k - 1})({2 - \\\\delta})} \\\\over {1 - \\\\delta}}} \\\\rceil}}.$$</span></div></div><p>As a corollary, we have an upper bound for <b>RT</b>(<i>n, K</i><sub>2,2,2</sub>, <i>n</i><sup><i>δ</i></sup>) for any 0 < <i>δ</i> < 1.</p></div>\",\"PeriodicalId\":6951,\"journal\":{\"name\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"volume\":\"41 4\",\"pages\":\"1011 - 1017\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10255-024-1071-1\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematicae Applicatae Sinica, English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-024-1071-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Two Ramsey-Turán Numbers of Small Independence Numbers
Given a forbidden graph H and a function f(n), the Ramsey-Turán number RT (n, H, f (n)) is the maximum number of edges of an H-free graph on n vertices with independence number less than f (n). For graphs G and H, the Ramsey number R(G, H) is the minimum integer N such that any red/blue edge coloring of the complete graph KN contains either a red G or a blue H. Denote G + H by the join graph obtained from disjoint G and H by adding all edges between them completely. We first show that for any fixed graph H, if there are two constants p:= p(H) > 0 and q:= q(H) > 1 such that \(R({H,{K_n}}) \le {{p{n^q}} \over {{{({\log n})}^{q - 1}}}}\), then \(\mathbf{RT}({n,{K_2} + H,o({{n^{{1 \over q}}}{{({\log n})}^{1 - {1 \over q}}}})}) = o({{n^2}})\), which extends several previous results. Moreover, we show that for any fixed forest F of order k ≥ 3, and for any 0 < δ < 1 and sufficiently large n
期刊介绍:
Acta Mathematicae Applicatae Sinica (English Series) is a quarterly journal established by the Chinese Mathematical Society. The journal publishes high quality research papers from all branches of applied mathematics, and particularly welcomes those from partial differential equations, computational mathematics, applied probability, mathematical finance, statistics, dynamical systems, optimization and management science.