两个Ramsey-Turán小独立数的个数

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
Xin-yu Hu, Qi-zhong Lin
{"title":"两个Ramsey-Turán小独立数的个数","authors":"Xin-yu Hu,&nbsp;Qi-zhong Lin","doi":"10.1007/s10255-024-1071-1","DOIUrl":null,"url":null,"abstract":"<div><p>Given a forbidden graph <i>H</i> and a function <i>f</i>(<i>n</i>), the Ramsey-Turán number <b>RT</b> (<i>n, H, f</i> (<i>n</i>)) is the maximum number of edges of an <i>H</i>-free graph on <i>n</i> vertices with independence number less than <i>f</i> (<i>n</i>). For graphs <i>G</i> and <i>H</i>, the Ramsey number <i>R</i>(<i>G, H</i>) is the minimum integer <i>N</i> such that any red/blue edge coloring of the complete graph <i>K</i><sub><i>N</i></sub> contains either a red <i>G</i> or a blue <i>H</i>. Denote <i>G</i> + <i>H</i> by the join graph obtained from disjoint <i>G</i> and <i>H</i> by adding all edges between them completely. We first show that for any fixed graph <i>H</i>, if there are two constants <i>p</i>:= <i>p</i>(<i>H</i>) &gt; 0 and <i>q</i>:= <i>q</i>(<i>H</i>) &gt; 1 such that <span>\\(R({H,{K_n}}) \\le {{p{n^q}} \\over {{{({\\log n})}^{q - 1}}}}\\)</span>, then <span>\\(\\mathbf{RT}({n,{K_2} + H,o({{n^{{1 \\over q}}}{{({\\log n})}^{1 - {1 \\over q}}}})}) = o({{n^2}})\\)</span>, which extends several previous results. Moreover, we show that for any fixed forest <i>F</i> of order <i>k</i> ≥ 3, and for any 0 &lt; <i>δ</i> &lt; 1 and sufficiently large <i>n</i></p><div><div><span>$${\\mathbf{RT}}({n,F + F,{n^\\delta}}) \\le {n^{2 - ({1 - \\delta})/\\lceil {{{({k - 1})({2 - \\delta})} \\over {1 - \\delta}}} \\rceil}}.$$</span></div></div><p>As a corollary, we have an upper bound for <b>RT</b>(<i>n, K</i><sub>2,2,2</sub>, <i>n</i><sup><i>δ</i></sup>) for any 0 &lt; <i>δ</i> &lt; 1.</p></div>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":"41 4","pages":"1011 - 1017"},"PeriodicalIF":0.9000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two Ramsey-Turán Numbers of Small Independence Numbers\",\"authors\":\"Xin-yu Hu,&nbsp;Qi-zhong Lin\",\"doi\":\"10.1007/s10255-024-1071-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Given a forbidden graph <i>H</i> and a function <i>f</i>(<i>n</i>), the Ramsey-Turán number <b>RT</b> (<i>n, H, f</i> (<i>n</i>)) is the maximum number of edges of an <i>H</i>-free graph on <i>n</i> vertices with independence number less than <i>f</i> (<i>n</i>). For graphs <i>G</i> and <i>H</i>, the Ramsey number <i>R</i>(<i>G, H</i>) is the minimum integer <i>N</i> such that any red/blue edge coloring of the complete graph <i>K</i><sub><i>N</i></sub> contains either a red <i>G</i> or a blue <i>H</i>. Denote <i>G</i> + <i>H</i> by the join graph obtained from disjoint <i>G</i> and <i>H</i> by adding all edges between them completely. We first show that for any fixed graph <i>H</i>, if there are two constants <i>p</i>:= <i>p</i>(<i>H</i>) &gt; 0 and <i>q</i>:= <i>q</i>(<i>H</i>) &gt; 1 such that <span>\\\\(R({H,{K_n}}) \\\\le {{p{n^q}} \\\\over {{{({\\\\log n})}^{q - 1}}}}\\\\)</span>, then <span>\\\\(\\\\mathbf{RT}({n,{K_2} + H,o({{n^{{1 \\\\over q}}}{{({\\\\log n})}^{1 - {1 \\\\over q}}}})}) = o({{n^2}})\\\\)</span>, which extends several previous results. Moreover, we show that for any fixed forest <i>F</i> of order <i>k</i> ≥ 3, and for any 0 &lt; <i>δ</i> &lt; 1 and sufficiently large <i>n</i></p><div><div><span>$${\\\\mathbf{RT}}({n,F + F,{n^\\\\delta}}) \\\\le {n^{2 - ({1 - \\\\delta})/\\\\lceil {{{({k - 1})({2 - \\\\delta})} \\\\over {1 - \\\\delta}}} \\\\rceil}}.$$</span></div></div><p>As a corollary, we have an upper bound for <b>RT</b>(<i>n, K</i><sub>2,2,2</sub>, <i>n</i><sup><i>δ</i></sup>) for any 0 &lt; <i>δ</i> &lt; 1.</p></div>\",\"PeriodicalId\":6951,\"journal\":{\"name\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"volume\":\"41 4\",\"pages\":\"1011 - 1017\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10255-024-1071-1\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematicae Applicatae Sinica, English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-024-1071-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

给定一个禁止图H和一个函数f(n), Ramsey-Turán数字RT (n, H, f(n))是一个无H图在n个独立数小于f(n)的顶点上的最大边数。对于图G和图H,拉姆齐数R(G, H)是最小整数N,使得完全图KN的任何红/蓝边着色都包含红色G或蓝色H。G + H由不相交的G和H通过将它们之间的所有边完全相加而得到的连接图表示。我们首先证明了对于任意固定图H,如果有两个常数p:= p(H) &gt; 0和q:= q(H) &gt; 1使得\(R({H,{K_n}}) \le {{p{n^q}} \over {{{({\log n})}^{q - 1}}}}\),那么\(\mathbf{RT}({n,{K_2} + H,o({{n^{{1 \over q}}}{{({\log n})}^{1 - {1 \over q}}}})}) = o({{n^2}})\),这扩展了之前的几个结果。此外,我们证明了对于任意k≥3阶的固定森林F,以及对于任意0 &lt; δ &lt; 1和足够大的n $${\mathbf{RT}}({n,F + F,{n^\delta}}) \le {n^{2 - ({1 - \delta})/\lceil {{{({k - 1})({2 - \delta})} \over {1 - \delta}}} \rceil}}.$$作为推论,对于任意0 &lt; δ &lt; 1,我们有RT(n, K2,2,2, nδ)的上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two Ramsey-Turán Numbers of Small Independence Numbers

Given a forbidden graph H and a function f(n), the Ramsey-Turán number RT (n, H, f (n)) is the maximum number of edges of an H-free graph on n vertices with independence number less than f (n). For graphs G and H, the Ramsey number R(G, H) is the minimum integer N such that any red/blue edge coloring of the complete graph KN contains either a red G or a blue H. Denote G + H by the join graph obtained from disjoint G and H by adding all edges between them completely. We first show that for any fixed graph H, if there are two constants p:= p(H) > 0 and q:= q(H) > 1 such that \(R({H,{K_n}}) \le {{p{n^q}} \over {{{({\log n})}^{q - 1}}}}\), then \(\mathbf{RT}({n,{K_2} + H,o({{n^{{1 \over q}}}{{({\log n})}^{1 - {1 \over q}}}})}) = o({{n^2}})\), which extends several previous results. Moreover, we show that for any fixed forest F of order k ≥ 3, and for any 0 < δ < 1 and sufficiently large n

$${\mathbf{RT}}({n,F + F,{n^\delta}}) \le {n^{2 - ({1 - \delta})/\lceil {{{({k - 1})({2 - \delta})} \over {1 - \delta}}} \rceil}}.$$

As a corollary, we have an upper bound for RT(n, K2,2,2, nδ) for any 0 < δ < 1.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
70
审稿时长
3.0 months
期刊介绍: Acta Mathematicae Applicatae Sinica (English Series) is a quarterly journal established by the Chinese Mathematical Society. The journal publishes high quality research papers from all branches of applied mathematics, and particularly welcomes those from partial differential equations, computational mathematics, applied probability, mathematical finance, statistics, dynamical systems, optimization and management science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信