Holling-Tanner模型解的分析

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
Ying-chao Hao, Kun-lun Huang, Xin-tian Jia, Cui-ping Li
{"title":"Holling-Tanner模型解的分析","authors":"Ying-chao Hao,&nbsp;Kun-lun Huang,&nbsp;Xin-tian Jia,&nbsp;Cui-ping Li","doi":"10.1007/s10255-024-1060-4","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we consider a kind of predator-prey model named Holling-Tanner model. Firstly, we prove all solutions of this model to be bounded from above. Secondly, we find a positive invariant set of the model, and prove the existence of stable limit cycle in this invariant set by Poincaré-Bendixson theorem for the unstable equilibrium. Thirdly, we get the region of parameters in which the corresponding stable equilibrium are also globally asymptotically stable. Lastly, we give a bifurcation diagram and illustration with two limit cycles for special parameters through numerical simulation. By our knowledge, the invariant set constructed in this paper is better than that in the book written by Murray.</p></div>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":"41 4","pages":"1142 - 1155"},"PeriodicalIF":0.9000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of Solutions of the Holling-Tanner Model\",\"authors\":\"Ying-chao Hao,&nbsp;Kun-lun Huang,&nbsp;Xin-tian Jia,&nbsp;Cui-ping Li\",\"doi\":\"10.1007/s10255-024-1060-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper we consider a kind of predator-prey model named Holling-Tanner model. Firstly, we prove all solutions of this model to be bounded from above. Secondly, we find a positive invariant set of the model, and prove the existence of stable limit cycle in this invariant set by Poincaré-Bendixson theorem for the unstable equilibrium. Thirdly, we get the region of parameters in which the corresponding stable equilibrium are also globally asymptotically stable. Lastly, we give a bifurcation diagram and illustration with two limit cycles for special parameters through numerical simulation. By our knowledge, the invariant set constructed in this paper is better than that in the book written by Murray.</p></div>\",\"PeriodicalId\":6951,\"journal\":{\"name\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"volume\":\"41 4\",\"pages\":\"1142 - 1155\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10255-024-1060-4\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematicae Applicatae Sinica, English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-024-1060-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑了一类捕食者-猎物模型——Holling-Tanner模型。首先,我们证明了该模型的所有解都是有界的。其次,我们找到了模型的一个正不变集,并利用不稳定平衡点的poincar - bendixson定理证明了该不变量集中存在稳定极限环。第三,我们得到了相应的稳定平衡点也是全局渐近稳定的参数区域。最后,通过数值模拟给出了特殊参数的两个极限环的分岔图和图解。据我们所知,本文构造的不变量集优于Murray书中的不变量集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of Solutions of the Holling-Tanner Model

In this paper we consider a kind of predator-prey model named Holling-Tanner model. Firstly, we prove all solutions of this model to be bounded from above. Secondly, we find a positive invariant set of the model, and prove the existence of stable limit cycle in this invariant set by Poincaré-Bendixson theorem for the unstable equilibrium. Thirdly, we get the region of parameters in which the corresponding stable equilibrium are also globally asymptotically stable. Lastly, we give a bifurcation diagram and illustration with two limit cycles for special parameters through numerical simulation. By our knowledge, the invariant set constructed in this paper is better than that in the book written by Murray.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
70
审稿时长
3.0 months
期刊介绍: Acta Mathematicae Applicatae Sinica (English Series) is a quarterly journal established by the Chinese Mathematical Society. The journal publishes high quality research papers from all branches of applied mathematics, and particularly welcomes those from partial differential equations, computational mathematics, applied probability, mathematical finance, statistics, dynamical systems, optimization and management science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信