用组合零矩阵判别全着色的邻接积

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
Meng-ying Shi, Li Zhang
{"title":"用组合零矩阵判别全着色的邻接积","authors":"Meng-ying Shi,&nbsp;Li Zhang","doi":"10.1007/s10255-024-1025-7","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>G</i> = (<i>V, E</i>) be a simple graph and ϕ: <i>V</i>(<i>G</i>) ⋃ <i>E</i>(<i>G</i>) → {1, 2, ⋯, <i>k</i>} be a proper total-<i>k</i>-coloring of <i>G</i>. Let <i>f</i>(<i>v</i>) = <i>ϕ</i>(<i>v</i>)Π<sub>uv∈<i>E</i>(G)</sub><i>ϕ</i>(<i>uv</i>). The coloring <i>ϕ</i> is neighbor product distinguishing if <i>f</i>(<i>u</i>) ≠ <i>f</i>(<i>v</i>) for each edge <i>uv</i> ∈ <i>E</i>(<i>G</i>). The neighbor product distinguishing total chromatic number of <i>G</i>, denoted by <i>χ</i><span>\n <sup>″</sup><sub>Π</sub>\n \n </span>(<i>G</i>), is the smallest integer <i>k</i> such that <i>G</i> admits a <i>k</i>-neighbor product distinguishing total coloring. Li et al. conjectured that <i>χ</i><span>\n <sup>″</sup><sub>Π</sub>\n \n </span>(<i>G</i>) ≤ Δ(<i>G</i>) + 3 for any graph with at least two vertices and confirmed the conjecture for <i>K</i><sub>4</sub>-minor free graph. In this paper, we prove that for a graph <i>G</i> with at least two vertices, (1) if mad <span>\\((G)&lt;{60 \\over 17}\\)</span>, then <i>χ</i><span>\n <sup>″</sup><sub>Π</sub>\n \n </span>(<i>G</i>) ≤ max{Δ + 2, 8}; (2) if mad <span>\\((G)&lt;{8 \\over 3}\\)</span>, then <i>χ</i><span>\n <sup>″</sup><sub>Π</sub>\n \n </span>(<i>G</i>) ≤ max{Δ + 2, 6}. Furthermore, by using the Combinatorial Nullstellensatz, we simplify their proof and show that <i>χ</i><span>\n <sup>″</sup><sub>Π</sub>\n \n </span>(<i>G</i>) ≤ max{Δ(<i>G</i>) + 2, 6} for any <i>K</i><sub>4</sub>-minor free graph.</p></div>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":"41 4","pages":"1167 - 1179"},"PeriodicalIF":0.9000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neighbor Product Distinguishing Total Coloring via Combinatorial Nullstellensatz\",\"authors\":\"Meng-ying Shi,&nbsp;Li Zhang\",\"doi\":\"10.1007/s10255-024-1025-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <i>G</i> = (<i>V, E</i>) be a simple graph and ϕ: <i>V</i>(<i>G</i>) ⋃ <i>E</i>(<i>G</i>) → {1, 2, ⋯, <i>k</i>} be a proper total-<i>k</i>-coloring of <i>G</i>. Let <i>f</i>(<i>v</i>) = <i>ϕ</i>(<i>v</i>)Π<sub>uv∈<i>E</i>(G)</sub><i>ϕ</i>(<i>uv</i>). The coloring <i>ϕ</i> is neighbor product distinguishing if <i>f</i>(<i>u</i>) ≠ <i>f</i>(<i>v</i>) for each edge <i>uv</i> ∈ <i>E</i>(<i>G</i>). The neighbor product distinguishing total chromatic number of <i>G</i>, denoted by <i>χ</i><span>\\n <sup>″</sup><sub>Π</sub>\\n \\n </span>(<i>G</i>), is the smallest integer <i>k</i> such that <i>G</i> admits a <i>k</i>-neighbor product distinguishing total coloring. Li et al. conjectured that <i>χ</i><span>\\n <sup>″</sup><sub>Π</sub>\\n \\n </span>(<i>G</i>) ≤ Δ(<i>G</i>) + 3 for any graph with at least two vertices and confirmed the conjecture for <i>K</i><sub>4</sub>-minor free graph. In this paper, we prove that for a graph <i>G</i> with at least two vertices, (1) if mad <span>\\\\((G)&lt;{60 \\\\over 17}\\\\)</span>, then <i>χ</i><span>\\n <sup>″</sup><sub>Π</sub>\\n \\n </span>(<i>G</i>) ≤ max{Δ + 2, 8}; (2) if mad <span>\\\\((G)&lt;{8 \\\\over 3}\\\\)</span>, then <i>χ</i><span>\\n <sup>″</sup><sub>Π</sub>\\n \\n </span>(<i>G</i>) ≤ max{Δ + 2, 6}. Furthermore, by using the Combinatorial Nullstellensatz, we simplify their proof and show that <i>χ</i><span>\\n <sup>″</sup><sub>Π</sub>\\n \\n </span>(<i>G</i>) ≤ max{Δ(<i>G</i>) + 2, 6} for any <i>K</i><sub>4</sub>-minor free graph.</p></div>\",\"PeriodicalId\":6951,\"journal\":{\"name\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"volume\":\"41 4\",\"pages\":\"1167 - 1179\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10255-024-1025-7\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematicae Applicatae Sinica, English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-024-1025-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

设G = (V, E)是一个简单图,并且φ: V(G)∈E(G)→{1,2,⋯k}是G的一个适当的全k着色。设f(V) = φ (V)Πuv∈E(G) φ (uv)。对于每条边uv∈E(G),着色φ是区分f(u)≠f(v)的邻接积。用χ″Π (G)表示的G的邻积可区分全着色数是使G允许有k个邻积可区分全着色的最小整数k。Li等人推测了χ″Π (G)≤Δ(G) + 3对于任何至少有两个顶点的图,并证实了k4 -小自由图的猜想。在本文中,我们证明了对于至少有两个顶点的图G,(1)如果为\((G)<{60 \over 17}\),则χ″Π (G)≤maxΔ {+ 2,8};(2)若为\((G)<{8 \over 3}\),则χ″Π (G)≤{maxΔ + 2,6}。进一步,利用组合Nullstellensatz,我们简化了他们的证明,并证明χ″Π (G)≤maxΔ{(G) + 2,6}对于任意k4 -次自由图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neighbor Product Distinguishing Total Coloring via Combinatorial Nullstellensatz

Let G = (V, E) be a simple graph and ϕ: V(G) ⋃ E(G) → {1, 2, ⋯, k} be a proper total-k-coloring of G. Let f(v) = ϕ(vuv∈E(G)ϕ(uv). The coloring ϕ is neighbor product distinguishing if f(u) ≠ f(v) for each edge uvE(G). The neighbor product distinguishing total chromatic number of G, denoted by χ Π (G), is the smallest integer k such that G admits a k-neighbor product distinguishing total coloring. Li et al. conjectured that χ Π (G) ≤ Δ(G) + 3 for any graph with at least two vertices and confirmed the conjecture for K4-minor free graph. In this paper, we prove that for a graph G with at least two vertices, (1) if mad \((G)<{60 \over 17}\), then χ Π (G) ≤ max{Δ + 2, 8}; (2) if mad \((G)<{8 \over 3}\), then χ Π (G) ≤ max{Δ + 2, 6}. Furthermore, by using the Combinatorial Nullstellensatz, we simplify their proof and show that χ Π (G) ≤ max{Δ(G) + 2, 6} for any K4-minor free graph.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
70
审稿时长
3.0 months
期刊介绍: Acta Mathematicae Applicatae Sinica (English Series) is a quarterly journal established by the Chinese Mathematical Society. The journal publishes high quality research papers from all branches of applied mathematics, and particularly welcomes those from partial differential equations, computational mathematics, applied probability, mathematical finance, statistics, dynamical systems, optimization and management science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信