{"title":"移动极值排序集抽样设计中的指数泊松参数估计","authors":"Meng Chen, Wang-xue Chen, Rui Yang, Ya-wen Zhou","doi":"10.1007/s10255-023-1076-1","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, the maximum likelihood estimators (MLEs) of the scale and shape parameters <i>β</i> and <i>λ</i> from the Exponential-Poisson distribution will be considered in moving extremes ranked set sampling (MERSS). These MLEs will be compared in terms of asymptotic efficiencies. The numerical results show that the MLEs obtained via MERSS can serve as effective alternatives to those derived from simple random sampling.</p></div>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":"41 4","pages":"973 - 984"},"PeriodicalIF":0.9000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exponential-Poisson Parameters Estimation in Moving Extremes Ranked Set Sampling Design\",\"authors\":\"Meng Chen, Wang-xue Chen, Rui Yang, Ya-wen Zhou\",\"doi\":\"10.1007/s10255-023-1076-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this article, the maximum likelihood estimators (MLEs) of the scale and shape parameters <i>β</i> and <i>λ</i> from the Exponential-Poisson distribution will be considered in moving extremes ranked set sampling (MERSS). These MLEs will be compared in terms of asymptotic efficiencies. The numerical results show that the MLEs obtained via MERSS can serve as effective alternatives to those derived from simple random sampling.</p></div>\",\"PeriodicalId\":6951,\"journal\":{\"name\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"volume\":\"41 4\",\"pages\":\"973 - 984\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10255-023-1076-1\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematicae Applicatae Sinica, English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-023-1076-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Exponential-Poisson Parameters Estimation in Moving Extremes Ranked Set Sampling Design
In this article, the maximum likelihood estimators (MLEs) of the scale and shape parameters β and λ from the Exponential-Poisson distribution will be considered in moving extremes ranked set sampling (MERSS). These MLEs will be compared in terms of asymptotic efficiencies. The numerical results show that the MLEs obtained via MERSS can serve as effective alternatives to those derived from simple random sampling.
期刊介绍:
Acta Mathematicae Applicatae Sinica (English Series) is a quarterly journal established by the Chinese Mathematical Society. The journal publishes high quality research papers from all branches of applied mathematics, and particularly welcomes those from partial differential equations, computational mathematics, applied probability, mathematical finance, statistics, dynamical systems, optimization and management science.