具有退化导热性的非等熵可压缩Navier-Stokes/Allen-Cahn系统的Cauchy问题

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
Ya-zhou Chen, Qiao-lin He, Bin Huang, Xiao-ding Shi
{"title":"具有退化导热性的非等熵可压缩Navier-Stokes/Allen-Cahn系统的Cauchy问题","authors":"Ya-zhou Chen,&nbsp;Qiao-lin He,&nbsp;Bin Huang,&nbsp;Xiao-ding Shi","doi":"10.1007/s10255-025-0063-0","DOIUrl":null,"url":null,"abstract":"<div><p>The Cauchy problem for non-isentropic compressible Navier-Stokes/Allen-Cahn system with degenerate heat-conductivity <span>\\(\\kappa (\\theta) = \\tilde \\kappa {\\theta ^\\beta}\\)</span> in 1-D is discussed in this paper. This system is widely used to describe the motion of immiscible two-phase flow with diffused interface. The well-posedness for strong solution of this problem is established with the <i>H</i><sup>1</sup> initial data for density, temperature, velocity, and the <i>H</i><sup>2</sup> initial data for phase field. The result shows that no discontinuity of the phase field, vacuum, shock wave, mass or heat concentration will be developed at any finite time in the whole space. From the hydrodynamic point of view, this means that no matter how complex the interaction between the hydrodynamic and phase-field effects, phase separation will not occur, but the phase transition is possible.</p></div>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":"41 4","pages":"1088 - 1105"},"PeriodicalIF":0.9000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Cauchy Problem for Non-Isentropic Compressible Navier-Stokes/Allen-Cahn system with Degenerate Heat-Conductivity\",\"authors\":\"Ya-zhou Chen,&nbsp;Qiao-lin He,&nbsp;Bin Huang,&nbsp;Xiao-ding Shi\",\"doi\":\"10.1007/s10255-025-0063-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Cauchy problem for non-isentropic compressible Navier-Stokes/Allen-Cahn system with degenerate heat-conductivity <span>\\\\(\\\\kappa (\\\\theta) = \\\\tilde \\\\kappa {\\\\theta ^\\\\beta}\\\\)</span> in 1-D is discussed in this paper. This system is widely used to describe the motion of immiscible two-phase flow with diffused interface. The well-posedness for strong solution of this problem is established with the <i>H</i><sup>1</sup> initial data for density, temperature, velocity, and the <i>H</i><sup>2</sup> initial data for phase field. The result shows that no discontinuity of the phase field, vacuum, shock wave, mass or heat concentration will be developed at any finite time in the whole space. From the hydrodynamic point of view, this means that no matter how complex the interaction between the hydrodynamic and phase-field effects, phase separation will not occur, but the phase transition is possible.</p></div>\",\"PeriodicalId\":6951,\"journal\":{\"name\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"volume\":\"41 4\",\"pages\":\"1088 - 1105\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10255-025-0063-0\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematicae Applicatae Sinica, English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-025-0063-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

讨论了一维简并导热系数\(\kappa (\theta) = \tilde \kappa {\theta ^\beta}\)的非等熵可压缩Navier-Stokes/Allen-Cahn系统的Cauchy问题。该系统被广泛用于描述具有扩散界面的非混相两相流的运动。利用密度、温度、速度的H1初始数据和相场的H2初始数据,建立了该问题强解的适定性。结果表明,在整个空间中,在任何有限时间内,相场、真空、激波、质量和热集中都不会发生不连续。从水动力的角度来看,这意味着无论水动力和相场效应之间的相互作用多么复杂,都不会发生相分离,但相变是可能的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Cauchy Problem for Non-Isentropic Compressible Navier-Stokes/Allen-Cahn system with Degenerate Heat-Conductivity

The Cauchy problem for non-isentropic compressible Navier-Stokes/Allen-Cahn system with degenerate heat-conductivity \(\kappa (\theta) = \tilde \kappa {\theta ^\beta}\) in 1-D is discussed in this paper. This system is widely used to describe the motion of immiscible two-phase flow with diffused interface. The well-posedness for strong solution of this problem is established with the H1 initial data for density, temperature, velocity, and the H2 initial data for phase field. The result shows that no discontinuity of the phase field, vacuum, shock wave, mass or heat concentration will be developed at any finite time in the whole space. From the hydrodynamic point of view, this means that no matter how complex the interaction between the hydrodynamic and phase-field effects, phase separation will not occur, but the phase transition is possible.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
70
审稿时长
3.0 months
期刊介绍: Acta Mathematicae Applicatae Sinica (English Series) is a quarterly journal established by the Chinese Mathematical Society. The journal publishes high quality research papers from all branches of applied mathematics, and particularly welcomes those from partial differential equations, computational mathematics, applied probability, mathematical finance, statistics, dynamical systems, optimization and management science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信