完全可压缩Navier-Stokes/Allen-Cahn方程稀疏波的稳定性

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
Hakho Hong, Gumryong Guen
{"title":"完全可压缩Navier-Stokes/Allen-Cahn方程稀疏波的稳定性","authors":"Hakho Hong,&nbsp;Gumryong Guen","doi":"10.1007/s10255-025-0023-8","DOIUrl":null,"url":null,"abstract":"<div><p>This paper is concerned with the non-isentropic compressible Navier-Stokes/Allen-Cahn equations with the diffusion interface, which is an important mathematical model in the numerical simulation of compressible immiscible two-phase flow. When the space-asymptotic states (<i>v</i><sub>±</sub>, <i>u</i><sub>±</sub>, <i>θ</i><sub>±</sub>) lie in the rarefaction curve of the Riemann problem of the compressible Euler equations, we prove that the time-asymptotic state of solutions to the 1-D Cauchy problem is the rarefaction wave, that is, the stability of the rarefaction wave, where the strength of the rarefaction wave is not required to be small. Moreover, we consider the general gases including ideal polytropic gas and allow the different space-asymptotic states <i>χ</i><sub>±</sub> for the concentration difference of the mixture fluids. The proof is mainly based on a basic energy method. By product, we give the proof of the uniqueness of the global solutions to the 1-D Cauchy problem.</p></div>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":"41 4","pages":"985 - 1010"},"PeriodicalIF":0.9000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability of the Rarefaction Wave for a Full Compressible Navier-Stokes/Allen-Cahn Equations\",\"authors\":\"Hakho Hong,&nbsp;Gumryong Guen\",\"doi\":\"10.1007/s10255-025-0023-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper is concerned with the non-isentropic compressible Navier-Stokes/Allen-Cahn equations with the diffusion interface, which is an important mathematical model in the numerical simulation of compressible immiscible two-phase flow. When the space-asymptotic states (<i>v</i><sub>±</sub>, <i>u</i><sub>±</sub>, <i>θ</i><sub>±</sub>) lie in the rarefaction curve of the Riemann problem of the compressible Euler equations, we prove that the time-asymptotic state of solutions to the 1-D Cauchy problem is the rarefaction wave, that is, the stability of the rarefaction wave, where the strength of the rarefaction wave is not required to be small. Moreover, we consider the general gases including ideal polytropic gas and allow the different space-asymptotic states <i>χ</i><sub>±</sub> for the concentration difference of the mixture fluids. The proof is mainly based on a basic energy method. By product, we give the proof of the uniqueness of the global solutions to the 1-D Cauchy problem.</p></div>\",\"PeriodicalId\":6951,\"journal\":{\"name\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"volume\":\"41 4\",\"pages\":\"985 - 1010\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10255-025-0023-8\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematicae Applicatae Sinica, English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-025-0023-8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了具有扩散界面的非等熵可压缩Navier-Stokes/Allen-Cahn方程,该方程是可压缩非混相两相流数值模拟中的一个重要数学模型。当空间渐近态(v±,u±,θ±)位于可压缩欧拉方程黎曼问题的稀疏曲线上时,证明了一维柯西问题解的时间渐近态是稀疏波,即稀疏波的稳定性,其中稀疏波的强度不要求很小。此外,我们考虑了包括理想多向气体在内的一般气体,并允许混合流体的浓度差有不同的空间渐近状态χ±。证明主要基于基本能量法。通过积证明了一维柯西问题全局解的唯一性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability of the Rarefaction Wave for a Full Compressible Navier-Stokes/Allen-Cahn Equations

This paper is concerned with the non-isentropic compressible Navier-Stokes/Allen-Cahn equations with the diffusion interface, which is an important mathematical model in the numerical simulation of compressible immiscible two-phase flow. When the space-asymptotic states (v±, u±, θ±) lie in the rarefaction curve of the Riemann problem of the compressible Euler equations, we prove that the time-asymptotic state of solutions to the 1-D Cauchy problem is the rarefaction wave, that is, the stability of the rarefaction wave, where the strength of the rarefaction wave is not required to be small. Moreover, we consider the general gases including ideal polytropic gas and allow the different space-asymptotic states χ± for the concentration difference of the mixture fluids. The proof is mainly based on a basic energy method. By product, we give the proof of the uniqueness of the global solutions to the 1-D Cauchy problem.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
70
审稿时长
3.0 months
期刊介绍: Acta Mathematicae Applicatae Sinica (English Series) is a quarterly journal established by the Chinese Mathematical Society. The journal publishes high quality research papers from all branches of applied mathematics, and particularly welcomes those from partial differential equations, computational mathematics, applied probability, mathematical finance, statistics, dynamical systems, optimization and management science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信