{"title":"趋化- navier - stokes模型的消失粘度极限","authors":"Ji-shan Fan, Fu-cai Li","doi":"10.1007/s10255-024-1061-3","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we prove vanishing viscosity limits of a coupled chemotaxis-fluid model in a bounded domain Ω ⊂ ℝ<sup>3</sup>. The proof is based on the Banach’s fixed point theorem and the <i>L</i><sup>p</sup>-energy method. In addition, the <i>L</i><sup>∞</sup>-estimates and gradient estimates of the heat equations also play a crucial role.</p></div>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":"41 4","pages":"1156 - 1166"},"PeriodicalIF":0.9000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10255-024-1061-3.pdf","citationCount":"0","resultStr":"{\"title\":\"Vanishing Viscosity Limits of a Chemotaxis-Navier-Stokes Model\",\"authors\":\"Ji-shan Fan, Fu-cai Li\",\"doi\":\"10.1007/s10255-024-1061-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper we prove vanishing viscosity limits of a coupled chemotaxis-fluid model in a bounded domain Ω ⊂ ℝ<sup>3</sup>. The proof is based on the Banach’s fixed point theorem and the <i>L</i><sup>p</sup>-energy method. In addition, the <i>L</i><sup>∞</sup>-estimates and gradient estimates of the heat equations also play a crucial role.</p></div>\",\"PeriodicalId\":6951,\"journal\":{\"name\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"volume\":\"41 4\",\"pages\":\"1156 - 1166\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10255-024-1061-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10255-024-1061-3\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematicae Applicatae Sinica, English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-024-1061-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Vanishing Viscosity Limits of a Chemotaxis-Navier-Stokes Model
In this paper we prove vanishing viscosity limits of a coupled chemotaxis-fluid model in a bounded domain Ω ⊂ ℝ3. The proof is based on the Banach’s fixed point theorem and the Lp-energy method. In addition, the L∞-estimates and gradient estimates of the heat equations also play a crucial role.
期刊介绍:
Acta Mathematicae Applicatae Sinica (English Series) is a quarterly journal established by the Chinese Mathematical Society. The journal publishes high quality research papers from all branches of applied mathematics, and particularly welcomes those from partial differential equations, computational mathematics, applied probability, mathematical finance, statistics, dynamical systems, optimization and management science.