趋化- navier - stokes模型的消失粘度极限

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
Ji-shan Fan, Fu-cai Li
{"title":"趋化- navier - stokes模型的消失粘度极限","authors":"Ji-shan Fan,&nbsp;Fu-cai Li","doi":"10.1007/s10255-024-1061-3","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we prove vanishing viscosity limits of a coupled chemotaxis-fluid model in a bounded domain Ω ⊂ ℝ<sup>3</sup>. The proof is based on the Banach’s fixed point theorem and the <i>L</i><sup>p</sup>-energy method. In addition, the <i>L</i><sup>∞</sup>-estimates and gradient estimates of the heat equations also play a crucial role.</p></div>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":"41 4","pages":"1156 - 1166"},"PeriodicalIF":0.9000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10255-024-1061-3.pdf","citationCount":"0","resultStr":"{\"title\":\"Vanishing Viscosity Limits of a Chemotaxis-Navier-Stokes Model\",\"authors\":\"Ji-shan Fan,&nbsp;Fu-cai Li\",\"doi\":\"10.1007/s10255-024-1061-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper we prove vanishing viscosity limits of a coupled chemotaxis-fluid model in a bounded domain Ω ⊂ ℝ<sup>3</sup>. The proof is based on the Banach’s fixed point theorem and the <i>L</i><sup>p</sup>-energy method. In addition, the <i>L</i><sup>∞</sup>-estimates and gradient estimates of the heat equations also play a crucial role.</p></div>\",\"PeriodicalId\":6951,\"journal\":{\"name\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"volume\":\"41 4\",\"pages\":\"1156 - 1166\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10255-024-1061-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10255-024-1061-3\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematicae Applicatae Sinica, English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-024-1061-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在这篇论文中,我们证明了一个耦合的趋化-流体模型在有界区域Ω∧∈3中的消失粘度极限。该证明基于Banach不动点定理和lp -能量法。此外,热方程的L∞估计和梯度估计也起着至关重要的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vanishing Viscosity Limits of a Chemotaxis-Navier-Stokes Model

In this paper we prove vanishing viscosity limits of a coupled chemotaxis-fluid model in a bounded domain Ω ⊂ ℝ3. The proof is based on the Banach’s fixed point theorem and the Lp-energy method. In addition, the L-estimates and gradient estimates of the heat equations also play a crucial role.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
70
审稿时长
3.0 months
期刊介绍: Acta Mathematicae Applicatae Sinica (English Series) is a quarterly journal established by the Chinese Mathematical Society. The journal publishes high quality research papers from all branches of applied mathematics, and particularly welcomes those from partial differential equations, computational mathematics, applied probability, mathematical finance, statistics, dynamical systems, optimization and management science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信