基于snse的柔性热电发电机p- to - n型转换和性能提升的共掺杂策略

IF 4.1 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Manasa R. Shankar, A. N. Prabhu and Ramakrishna Nayak
{"title":"基于snse的柔性热电发电机p- to - n型转换和性能提升的共掺杂策略","authors":"Manasa R. Shankar, A. N. Prabhu and Ramakrishna Nayak","doi":"10.1039/D5SE00175G","DOIUrl":null,"url":null,"abstract":"<p >Flexible thermoelectric generators (FTEGs) have garnered considerable interest for their potential in energy harvesting applications. This study investigates the synthesis of SnSe and Bi/Te co-doped SnSe polycrystals using the solid-state reaction method, followed by the fabrication of FTEGs using a low-cost, scalable screen-printing technique. Hall effect measurements confirm successful doping, resulting in a transition from p-type to n-type conduction in SnSe. The Seebeck coefficient of the 2% Bi-doped SnSe/SnSe (p–n type) FTEG reaches −1146 μV K<small><sup>−1</sup></small>, enhancing the thermoelectric performance. A maximum power output of 6.8 nW was obtained for a p–n-type FTEG consisting of SnSe and Sn<small><sub>0.98</sub></small>Bi<small><sub>0.02</sub></small>Se<small><sub>0.97</sub></small>Te<small><sub>0.03</sub></small> at a temperature difference of 120 °C. Thermal conductivity measurements indicate that doping reduces phonon transport due to increased microstrain and dislocation density, which enhance phonon scattering. Furthermore, the FTEGs exhibited excellent mechanical stability, with less than 0.5% change in electrical resistance at bending angles up to 120° and after 500 cycles. These results suggest that Bi/Te co-doped SnSe is a potential candidate for scalable, flexible thermoelectric applications.</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":" 20","pages":" 5635-5647"},"PeriodicalIF":4.1000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/se/d5se00175g?page=search","citationCount":"0","resultStr":"{\"title\":\"A co-doping strategy for p- to n-type transition and performance boost in SnSe-based flexible thermoelectric generators\",\"authors\":\"Manasa R. Shankar, A. N. Prabhu and Ramakrishna Nayak\",\"doi\":\"10.1039/D5SE00175G\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Flexible thermoelectric generators (FTEGs) have garnered considerable interest for their potential in energy harvesting applications. This study investigates the synthesis of SnSe and Bi/Te co-doped SnSe polycrystals using the solid-state reaction method, followed by the fabrication of FTEGs using a low-cost, scalable screen-printing technique. Hall effect measurements confirm successful doping, resulting in a transition from p-type to n-type conduction in SnSe. The Seebeck coefficient of the 2% Bi-doped SnSe/SnSe (p–n type) FTEG reaches −1146 μV K<small><sup>−1</sup></small>, enhancing the thermoelectric performance. A maximum power output of 6.8 nW was obtained for a p–n-type FTEG consisting of SnSe and Sn<small><sub>0.98</sub></small>Bi<small><sub>0.02</sub></small>Se<small><sub>0.97</sub></small>Te<small><sub>0.03</sub></small> at a temperature difference of 120 °C. Thermal conductivity measurements indicate that doping reduces phonon transport due to increased microstrain and dislocation density, which enhance phonon scattering. Furthermore, the FTEGs exhibited excellent mechanical stability, with less than 0.5% change in electrical resistance at bending angles up to 120° and after 500 cycles. These results suggest that Bi/Te co-doped SnSe is a potential candidate for scalable, flexible thermoelectric applications.</p>\",\"PeriodicalId\":104,\"journal\":{\"name\":\"Sustainable Energy & Fuels\",\"volume\":\" 20\",\"pages\":\" 5635-5647\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/se/d5se00175g?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Energy & Fuels\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/se/d5se00175g\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy & Fuels","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/se/d5se00175g","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

柔性热电发电机(FTEGs)因其在能量收集应用中的潜力而引起了相当大的兴趣。本研究研究了采用固相反应方法合成SnSe和Bi/Te共掺杂SnSe多晶,然后使用低成本,可扩展的丝网印刷技术制造FTEGs。霍尔效应测量证实了掺杂的成功,导致SnSe从p型传导转变为n型传导。2%双掺杂SnSe/SnSe (p-n型)FTEG的Seebeck系数达到−1146 μV K−1,热电性能得到增强。在120℃的温差下,由SnSe和Sn0.98Bi0.02Se0.97Te0.03组成的p - n型FTEG的最大输出功率为6.8 nW。热导率测量表明,由于微应变和位错密度的增加,掺杂降低了声子输运,从而增强了声子散射。此外,fteg表现出优异的机械稳定性,在120°弯曲角度和500次循环后,电阻变化小于0.5%。这些结果表明,Bi/Te共掺杂的SnSe是可扩展的、灵活的热电应用的潜在候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A co-doping strategy for p- to n-type transition and performance boost in SnSe-based flexible thermoelectric generators

A co-doping strategy for p- to n-type transition and performance boost in SnSe-based flexible thermoelectric generators

Flexible thermoelectric generators (FTEGs) have garnered considerable interest for their potential in energy harvesting applications. This study investigates the synthesis of SnSe and Bi/Te co-doped SnSe polycrystals using the solid-state reaction method, followed by the fabrication of FTEGs using a low-cost, scalable screen-printing technique. Hall effect measurements confirm successful doping, resulting in a transition from p-type to n-type conduction in SnSe. The Seebeck coefficient of the 2% Bi-doped SnSe/SnSe (p–n type) FTEG reaches −1146 μV K−1, enhancing the thermoelectric performance. A maximum power output of 6.8 nW was obtained for a p–n-type FTEG consisting of SnSe and Sn0.98Bi0.02Se0.97Te0.03 at a temperature difference of 120 °C. Thermal conductivity measurements indicate that doping reduces phonon transport due to increased microstrain and dislocation density, which enhance phonon scattering. Furthermore, the FTEGs exhibited excellent mechanical stability, with less than 0.5% change in electrical resistance at bending angles up to 120° and after 500 cycles. These results suggest that Bi/Te co-doped SnSe is a potential candidate for scalable, flexible thermoelectric applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sustainable Energy & Fuels
Sustainable Energy & Fuels Energy-Energy Engineering and Power Technology
CiteScore
10.00
自引率
3.60%
发文量
394
期刊介绍: Sustainable Energy & Fuels will publish research that contributes to the development of sustainable energy technologies with a particular emphasis on new and next-generation technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信