一种双功能电催化剂,用于高效制氢和通过混合海水分裂将乙醇转化为醋酸盐

IF 4.1 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Faiza Zulfiqar, Farhan Arshad, Mohammed A. Gondal, Hatice Duran, Senem Çitoğlu and Falak Sher
{"title":"一种双功能电催化剂,用于高效制氢和通过混合海水分裂将乙醇转化为醋酸盐","authors":"Faiza Zulfiqar, Farhan Arshad, Mohammed A. Gondal, Hatice Duran, Senem Çitoğlu and Falak Sher","doi":"10.1039/D5SE00879D","DOIUrl":null,"url":null,"abstract":"<p >The sluggish kinetics of the oxygen evolution reaction (OER) and the competing chlorine evolution reaction (CER) significantly limit the efficiency of seawater electrolysis for hydrogen production. Replacing OER/CER with thermodynamically more favorable anodic reactions presents a promising strategy for reducing energy consumption and overcoming chlorine-based toxic products. This study reports a hybrid seawater electrolysis system that couples the ethanol oxidation reaction (EOR) with the hydrogen evolution reaction (HER), enabling the co-production of green hydrogen and value-added potassium acetate in alkaline seawater. Utilizing bimetallic NiCu hierarchical nanostructures supported on nickel foam (NiCu–HNS@NF) as a bifunctional electrocatalyst, this promising system required 220 mV less potential for EOR compared to OER to achieve a current density of 20 mA cm<small><sup>−2</sup></small>. Meanwhile, the HER required a low overpotential of only 97 mV to attain the same current density, with a faradaic efficiency (FE) of 97.6%. The CO<small><sub>2</sub></small>-free selective conversion of ethanol into acetate, along with the high faradaic efficiency (FE) for H<small><sub>2</sub></small>, may be attributed to the bubbles-templated interconnected hierarchical nanostructures and the bimetallic synergistic effect. This study highlights the potential of ethanol-assisted seawater electrolysis as an energy-efficient and economically viable platform for sustainable hydrogen production and biomass valorization.</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":" 20","pages":" 5648-5656"},"PeriodicalIF":4.1000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A bifunctional electrocatalyst for energy-efficient hydrogen production and ethanol upgrading into acetate via hybrid seawater splitting\",\"authors\":\"Faiza Zulfiqar, Farhan Arshad, Mohammed A. Gondal, Hatice Duran, Senem Çitoğlu and Falak Sher\",\"doi\":\"10.1039/D5SE00879D\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The sluggish kinetics of the oxygen evolution reaction (OER) and the competing chlorine evolution reaction (CER) significantly limit the efficiency of seawater electrolysis for hydrogen production. Replacing OER/CER with thermodynamically more favorable anodic reactions presents a promising strategy for reducing energy consumption and overcoming chlorine-based toxic products. This study reports a hybrid seawater electrolysis system that couples the ethanol oxidation reaction (EOR) with the hydrogen evolution reaction (HER), enabling the co-production of green hydrogen and value-added potassium acetate in alkaline seawater. Utilizing bimetallic NiCu hierarchical nanostructures supported on nickel foam (NiCu–HNS@NF) as a bifunctional electrocatalyst, this promising system required 220 mV less potential for EOR compared to OER to achieve a current density of 20 mA cm<small><sup>−2</sup></small>. Meanwhile, the HER required a low overpotential of only 97 mV to attain the same current density, with a faradaic efficiency (FE) of 97.6%. The CO<small><sub>2</sub></small>-free selective conversion of ethanol into acetate, along with the high faradaic efficiency (FE) for H<small><sub>2</sub></small>, may be attributed to the bubbles-templated interconnected hierarchical nanostructures and the bimetallic synergistic effect. This study highlights the potential of ethanol-assisted seawater electrolysis as an energy-efficient and economically viable platform for sustainable hydrogen production and biomass valorization.</p>\",\"PeriodicalId\":104,\"journal\":{\"name\":\"Sustainable Energy & Fuels\",\"volume\":\" 20\",\"pages\":\" 5648-5656\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Energy & Fuels\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/se/d5se00879d\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy & Fuels","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/se/d5se00879d","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

析氧反应(OER)和析氯反应(CER)的缓慢动力学严重限制了海水电解制氢的效率。用热力学上更有利的阳极反应取代OER/CER是降低能耗和克服氯基有毒产物的一种很有前途的策略。本研究报道了一种混合海水电解系统,该系统将乙醇氧化反应(EOR)与析氢反应(HER)耦合在一起,实现了碱性海水中绿色氢和增值醋酸钾的联产。利用泡沫镍支撑的双金属NiCu分层纳米结构(NiCu - HNS@NF)作为双功能电催化剂,与OER相比,该系统所需的EOR电位降低了220 mV,电流密度达到20 mA cm - 2。同时,HER只需97 mV的低过电位即可达到相同的电流密度,法拉第效率(FE)为97.6%。乙醇无co2选择性转化为乙酸酯,以及H2的高法拉第效率(FE),可能归因于气泡模板互连层次纳米结构和双金属协同效应。这项研究强调了乙醇辅助海水电解作为一种节能且经济可行的可持续制氢和生物质增值平台的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A bifunctional electrocatalyst for energy-efficient hydrogen production and ethanol upgrading into acetate via hybrid seawater splitting

A bifunctional electrocatalyst for energy-efficient hydrogen production and ethanol upgrading into acetate via hybrid seawater splitting

The sluggish kinetics of the oxygen evolution reaction (OER) and the competing chlorine evolution reaction (CER) significantly limit the efficiency of seawater electrolysis for hydrogen production. Replacing OER/CER with thermodynamically more favorable anodic reactions presents a promising strategy for reducing energy consumption and overcoming chlorine-based toxic products. This study reports a hybrid seawater electrolysis system that couples the ethanol oxidation reaction (EOR) with the hydrogen evolution reaction (HER), enabling the co-production of green hydrogen and value-added potassium acetate in alkaline seawater. Utilizing bimetallic NiCu hierarchical nanostructures supported on nickel foam (NiCu–HNS@NF) as a bifunctional electrocatalyst, this promising system required 220 mV less potential for EOR compared to OER to achieve a current density of 20 mA cm−2. Meanwhile, the HER required a low overpotential of only 97 mV to attain the same current density, with a faradaic efficiency (FE) of 97.6%. The CO2-free selective conversion of ethanol into acetate, along with the high faradaic efficiency (FE) for H2, may be attributed to the bubbles-templated interconnected hierarchical nanostructures and the bimetallic synergistic effect. This study highlights the potential of ethanol-assisted seawater electrolysis as an energy-efficient and economically viable platform for sustainable hydrogen production and biomass valorization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sustainable Energy & Fuels
Sustainable Energy & Fuels Energy-Energy Engineering and Power Technology
CiteScore
10.00
自引率
3.60%
发文量
394
期刊介绍: Sustainable Energy & Fuels will publish research that contributes to the development of sustainable energy technologies with a particular emphasis on new and next-generation technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信