突破丙酮抑制:可持续合成手性芳基醇的综合蛋白质工程和生物反应器设计

IF 9.2 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Green Chemistry Pub Date : 2025-09-03 DOI:10.1039/D5GC02816G
Feng Qian, Yaowu Wang, Zhe Wang, Hanyu Liu, Ying Zhang, Haimin Zhang and Pu Wang
{"title":"突破丙酮抑制:可持续合成手性芳基醇的综合蛋白质工程和生物反应器设计","authors":"Feng Qian, Yaowu Wang, Zhe Wang, Hanyu Liu, Ying Zhang, Haimin Zhang and Pu Wang","doi":"10.1039/D5GC02816G","DOIUrl":null,"url":null,"abstract":"<p >The asymmetric biosynthesis of chiral aryl alcohols at high substrate concentrations is hindered by acetone accumulation, a byproduct of isopropanol-mediated cofactor regeneration. Here, a structure-guided mutant carbonyl reductase <em>LX</em>CAR-S154Y/I145A/R191Q (<em>LX</em>CAR-Q<small><sub>3</sub></small>) was engineered to alleviate acetone competitive inhibition by expanding an enzyme active pocket, achieving a 224% increase in catalytic efficiency (<em>k</em><small><sub>cat</sub></small>/<em>K</em><small><sub>m</sub></small>) for 2-chloro-1-(3,4-difluorophenyl)ethanone (CFPO) and a 59% reduction for acetone. Furthermore, coupled with an efficient <em>in situ</em> acetone removal bioreactor (EIARB), a neat isopropanol system enabled the complete conversion of 1000 g L<small><sup>−1</sup></small> CFPO to (<em>S</em>)-2-chloro-1-(3,4-difluorophenyl)ethanol ((<em>S</em>)-CFPL) within 7.5 h, yielding a record space–time yield of 3041 g L<small><sup>−1</sup></small> d<small><sup>−1</sup></small>. The biocatalyst retained full activity over five consecutive cycles at 400 g L<small><sup>−1</sup></small> CFPO, achieving a peak yield of 7299 g L<small><sup>−1</sup></small> d<small><sup>−1</sup></small>. This neat isopropanol system, coupled with <em>in situ</em> isopropanol recovery and simplified product isolation, demonstrated applicability for synthesizing various chiral aryl alcohols at 2 M substrate loading, underscoring its industrial viability for sustainable and cost-effective biocatalysis. This study presents an environmentally benign approach for chiral alcohol biosynthesis and introduces a flexible mutation strategy for the robustness of carbonyl reductases in biocatalysis.</p>","PeriodicalId":78,"journal":{"name":"Green Chemistry","volume":" 39","pages":" 12270-12280"},"PeriodicalIF":9.2000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Breaking through acetone inhibition: integrated protein engineering and bioreactor design for sustainable chiral aryl alcohol synthesis\",\"authors\":\"Feng Qian, Yaowu Wang, Zhe Wang, Hanyu Liu, Ying Zhang, Haimin Zhang and Pu Wang\",\"doi\":\"10.1039/D5GC02816G\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The asymmetric biosynthesis of chiral aryl alcohols at high substrate concentrations is hindered by acetone accumulation, a byproduct of isopropanol-mediated cofactor regeneration. Here, a structure-guided mutant carbonyl reductase <em>LX</em>CAR-S154Y/I145A/R191Q (<em>LX</em>CAR-Q<small><sub>3</sub></small>) was engineered to alleviate acetone competitive inhibition by expanding an enzyme active pocket, achieving a 224% increase in catalytic efficiency (<em>k</em><small><sub>cat</sub></small>/<em>K</em><small><sub>m</sub></small>) for 2-chloro-1-(3,4-difluorophenyl)ethanone (CFPO) and a 59% reduction for acetone. Furthermore, coupled with an efficient <em>in situ</em> acetone removal bioreactor (EIARB), a neat isopropanol system enabled the complete conversion of 1000 g L<small><sup>−1</sup></small> CFPO to (<em>S</em>)-2-chloro-1-(3,4-difluorophenyl)ethanol ((<em>S</em>)-CFPL) within 7.5 h, yielding a record space–time yield of 3041 g L<small><sup>−1</sup></small> d<small><sup>−1</sup></small>. The biocatalyst retained full activity over five consecutive cycles at 400 g L<small><sup>−1</sup></small> CFPO, achieving a peak yield of 7299 g L<small><sup>−1</sup></small> d<small><sup>−1</sup></small>. This neat isopropanol system, coupled with <em>in situ</em> isopropanol recovery and simplified product isolation, demonstrated applicability for synthesizing various chiral aryl alcohols at 2 M substrate loading, underscoring its industrial viability for sustainable and cost-effective biocatalysis. This study presents an environmentally benign approach for chiral alcohol biosynthesis and introduces a flexible mutation strategy for the robustness of carbonyl reductases in biocatalysis.</p>\",\"PeriodicalId\":78,\"journal\":{\"name\":\"Green Chemistry\",\"volume\":\" 39\",\"pages\":\" 12270-12280\"},\"PeriodicalIF\":9.2000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/gc/d5gc02816g\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/gc/d5gc02816g","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在高底物浓度下,手性芳基醇的不对称生物合成受到丙酮积累的阻碍,丙酮积累是异丙醇介导的辅助因子再生的副产物。本研究设计了一种结构导向的突变型羰基还原酶LXCAR-S154Y/I145A/R191Q (LXCAR-Q3),通过扩大酶活性口袋来减轻丙酮的竞争性抑制,使2-氯-1-(3,4-二氟苯基)乙烷(CFPO)的催化效率(kcat/Km)提高了224%,丙酮的催化效率降低了59%。此外,与高效的原位丙酮去除生物反应器(EIARB)相结合,整齐的异丙醇体系使1000 g L−1 CFPO在7.5小时内完全转化为(S)-2-氯-1-(3,4-二氟苯基)乙醇((S)- cfpl),产生了3041 g L−1 d−1的时空产率记录。该生物催化剂在400 g L−1 CFPO下连续5个循环保持充分的活性,峰值产率达到7299g L−1 d−1。这种整洁的异丙醇体系,加上原位异丙醇回收和简化的产物分离,证明了在2 M底物负载下合成各种手性芳醇的适用性,强调了其可持续和经济高效的工业可行性生物催化。本研究提出了一种对环境无害的手性醇生物合成方法,并引入了一种灵活的突变策略,以提高羰基还原酶在生物催化中的稳健性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Breaking through acetone inhibition: integrated protein engineering and bioreactor design for sustainable chiral aryl alcohol synthesis

Breaking through acetone inhibition: integrated protein engineering and bioreactor design for sustainable chiral aryl alcohol synthesis

The asymmetric biosynthesis of chiral aryl alcohols at high substrate concentrations is hindered by acetone accumulation, a byproduct of isopropanol-mediated cofactor regeneration. Here, a structure-guided mutant carbonyl reductase LXCAR-S154Y/I145A/R191Q (LXCAR-Q3) was engineered to alleviate acetone competitive inhibition by expanding an enzyme active pocket, achieving a 224% increase in catalytic efficiency (kcat/Km) for 2-chloro-1-(3,4-difluorophenyl)ethanone (CFPO) and a 59% reduction for acetone. Furthermore, coupled with an efficient in situ acetone removal bioreactor (EIARB), a neat isopropanol system enabled the complete conversion of 1000 g L−1 CFPO to (S)-2-chloro-1-(3,4-difluorophenyl)ethanol ((S)-CFPL) within 7.5 h, yielding a record space–time yield of 3041 g L−1 d−1. The biocatalyst retained full activity over five consecutive cycles at 400 g L−1 CFPO, achieving a peak yield of 7299 g L−1 d−1. This neat isopropanol system, coupled with in situ isopropanol recovery and simplified product isolation, demonstrated applicability for synthesizing various chiral aryl alcohols at 2 M substrate loading, underscoring its industrial viability for sustainable and cost-effective biocatalysis. This study presents an environmentally benign approach for chiral alcohol biosynthesis and introduces a flexible mutation strategy for the robustness of carbonyl reductases in biocatalysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Green Chemistry
Green Chemistry 化学-化学综合
CiteScore
16.10
自引率
7.10%
发文量
677
审稿时长
1.4 months
期刊介绍: Green Chemistry is a journal that provides a unique forum for the publication of innovative research on the development of alternative green and sustainable technologies. The scope of Green Chemistry is based on the definition proposed by Anastas and Warner (Green Chemistry: Theory and Practice, P T Anastas and J C Warner, Oxford University Press, Oxford, 1998), which defines green chemistry as the utilisation of a set of principles that reduces or eliminates the use or generation of hazardous substances in the design, manufacture and application of chemical products. Green Chemistry aims to reduce the environmental impact of the chemical enterprise by developing a technology base that is inherently non-toxic to living things and the environment. The journal welcomes submissions on all aspects of research relating to this endeavor and publishes original and significant cutting-edge research that is likely to be of wide general appeal. For a work to be published, it must present a significant advance in green chemistry, including a comparison with existing methods and a demonstration of advantages over those methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信