基于联邦多智能体深度强化学习的自适应社会元宇宙流

IF 4.5 2区 计算机科学 Q1 COMPUTER SCIENCE, CYBERNETICS
Zijian Long;Haopeng Wang;Haiwei Dong;Abdulmotaleb El Saddik
{"title":"基于联邦多智能体深度强化学习的自适应社会元宇宙流","authors":"Zijian Long;Haopeng Wang;Haiwei Dong;Abdulmotaleb El Saddik","doi":"10.1109/TCSS.2025.3555419","DOIUrl":null,"url":null,"abstract":"The social metaverse is a growing digital ecosystem that blends virtual and physical worlds. It allows users to interact socially, work, shop, and enjoy entertainment. However, privacy remains a major challenge, as immersive interactions require continuous collection of biometric and behavioral data. At the same time, ensuring high-quality, low-latency streaming is difficult due to the demands of real-time interaction, immersive rendering, and bandwidth optimization. To address these issues, we propose adaptive social metaverse streaming (ASMS), a novel streaming system based on federated multiagent proximal policy optimization (F-MAPPO). ASMS leverages F-MAPPO, which integrates federated learning (FL) and deep reinforcement learning (DRL) to dynamically adjust streaming bit rates while preserving user privacy. Experimental results show that ASMS improves user experience by at least 14% compared to existing streaming methods across various network conditions. Therefore, ASMS enhances the social metaverse experience by providing seamless and immersive streaming, even in dynamic and resource-constrained networks, while ensuring that sensitive user data remain on local devices.","PeriodicalId":13044,"journal":{"name":"IEEE Transactions on Computational Social Systems","volume":"12 5","pages":"3804-3815"},"PeriodicalIF":4.5000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Social Metaverse Streaming Based on Federated Multiagent Deep Reinforcement Learning\",\"authors\":\"Zijian Long;Haopeng Wang;Haiwei Dong;Abdulmotaleb El Saddik\",\"doi\":\"10.1109/TCSS.2025.3555419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The social metaverse is a growing digital ecosystem that blends virtual and physical worlds. It allows users to interact socially, work, shop, and enjoy entertainment. However, privacy remains a major challenge, as immersive interactions require continuous collection of biometric and behavioral data. At the same time, ensuring high-quality, low-latency streaming is difficult due to the demands of real-time interaction, immersive rendering, and bandwidth optimization. To address these issues, we propose adaptive social metaverse streaming (ASMS), a novel streaming system based on federated multiagent proximal policy optimization (F-MAPPO). ASMS leverages F-MAPPO, which integrates federated learning (FL) and deep reinforcement learning (DRL) to dynamically adjust streaming bit rates while preserving user privacy. Experimental results show that ASMS improves user experience by at least 14% compared to existing streaming methods across various network conditions. Therefore, ASMS enhances the social metaverse experience by providing seamless and immersive streaming, even in dynamic and resource-constrained networks, while ensuring that sensitive user data remain on local devices.\",\"PeriodicalId\":13044,\"journal\":{\"name\":\"IEEE Transactions on Computational Social Systems\",\"volume\":\"12 5\",\"pages\":\"3804-3815\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Computational Social Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10955488/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, CYBERNETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computational Social Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10955488/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 0

摘要

社交虚拟世界是一个不断发展的数字生态系统,它融合了虚拟世界和现实世界。它允许用户进行社交互动、工作、购物和享受娱乐。然而,隐私仍然是一个主要的挑战,因为沉浸式交互需要不断收集生物特征和行为数据。同时,由于对实时交互、沉浸式渲染和带宽优化的要求,难以保证高质量、低延迟的流媒体。为了解决这些问题,我们提出了一种基于联邦多智能体近端策略优化(F-MAPPO)的自适应社会元数据流(ASMS)。asm利用F-MAPPO,它集成了联邦学习(FL)和深度强化学习(DRL),在保护用户隐私的同时动态调整流比特率。实验结果表明,在各种网络条件下,与现有的流媒体方法相比,ASMS至少提高了14%的用户体验。因此,即使在动态和资源受限的网络中,asm也能提供无缝的沉浸式流媒体,同时确保敏感的用户数据保留在本地设备上,从而增强社交虚拟世界体验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Social Metaverse Streaming Based on Federated Multiagent Deep Reinforcement Learning
The social metaverse is a growing digital ecosystem that blends virtual and physical worlds. It allows users to interact socially, work, shop, and enjoy entertainment. However, privacy remains a major challenge, as immersive interactions require continuous collection of biometric and behavioral data. At the same time, ensuring high-quality, low-latency streaming is difficult due to the demands of real-time interaction, immersive rendering, and bandwidth optimization. To address these issues, we propose adaptive social metaverse streaming (ASMS), a novel streaming system based on federated multiagent proximal policy optimization (F-MAPPO). ASMS leverages F-MAPPO, which integrates federated learning (FL) and deep reinforcement learning (DRL) to dynamically adjust streaming bit rates while preserving user privacy. Experimental results show that ASMS improves user experience by at least 14% compared to existing streaming methods across various network conditions. Therefore, ASMS enhances the social metaverse experience by providing seamless and immersive streaming, even in dynamic and resource-constrained networks, while ensuring that sensitive user data remain on local devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Computational Social Systems
IEEE Transactions on Computational Social Systems Social Sciences-Social Sciences (miscellaneous)
CiteScore
10.00
自引率
20.00%
发文量
316
期刊介绍: IEEE Transactions on Computational Social Systems focuses on such topics as modeling, simulation, analysis and understanding of social systems from the quantitative and/or computational perspective. "Systems" include man-man, man-machine and machine-machine organizations and adversarial situations as well as social media structures and their dynamics. More specifically, the proposed transactions publishes articles on modeling the dynamics of social systems, methodologies for incorporating and representing socio-cultural and behavioral aspects in computational modeling, analysis of social system behavior and structure, and paradigms for social systems modeling and simulation. The journal also features articles on social network dynamics, social intelligence and cognition, social systems design and architectures, socio-cultural modeling and representation, and computational behavior modeling, and their applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信