用血脑屏障芯片模拟脑卒中缺血再灌注损伤

IF 4.3 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
ACS Omega Pub Date : 2025-09-26 DOI:10.1021/acsomega.5c06071
Yunsong Wu, , , Min Zhang, , , Peng Wang, , , Haitao Liu, , , Xu Zhang, , and , Jianhua Qin*, 
{"title":"用血脑屏障芯片模拟脑卒中缺血再灌注损伤","authors":"Yunsong Wu,&nbsp;, ,&nbsp;Min Zhang,&nbsp;, ,&nbsp;Peng Wang,&nbsp;, ,&nbsp;Haitao Liu,&nbsp;, ,&nbsp;Xu Zhang,&nbsp;, and ,&nbsp;Jianhua Qin*,&nbsp;","doi":"10.1021/acsomega.5c06071","DOIUrl":null,"url":null,"abstract":"<p >Ischemic stroke is a leading cause of disability worldwide and poses a serious threat to public health, affecting tens of millions of people all over the world per year. The lack of a humanized organ model reflecting the real situation of patients has quite limited the pathogenesis research and therapeutic drug development of ischemic stroke. In this study, we developed an ischemic stroke model based on a high-throughput microfluidic chip device, simulating ischemia-reperfusion injury in an ischemic stroke. In this ischemic stroke model, we observed a series of injury characteristics, including significant blood–brain barrier (BBB) destruction, cell apoptosis, and mitochondrial dysfunction. Transcriptome sequencing analysis showed that the expression of genes involved in autophagy, oxidative stress, angiogenesis, and other related pathways was significantly dysregulated in the ischemic stroke model. Drug screening experiments revealed that acetazolamide (AZA), edaravone (EDA), and fasudil (FAS) could significantly reduce the damage in an ischemic stroke model. Overall, the ischemic stroke model recapitulated the physiological and pathological responses of ischemic stroke, and it was innovative that our model focused on reperfusion injury using microfluidic organ-on-a-chip technology. This ischemic stroke brain model holds promise for advancing the development and testing of therapeutic drugs for ischemic stroke, thus contributing to the evolution of treatment strategies.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"10 39","pages":"45680–45695"},"PeriodicalIF":4.3000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsomega.5c06071","citationCount":"0","resultStr":"{\"title\":\"Modeling Ischemia-Reperfusion Injury in Stroke Using the BBB Chip\",\"authors\":\"Yunsong Wu,&nbsp;, ,&nbsp;Min Zhang,&nbsp;, ,&nbsp;Peng Wang,&nbsp;, ,&nbsp;Haitao Liu,&nbsp;, ,&nbsp;Xu Zhang,&nbsp;, and ,&nbsp;Jianhua Qin*,&nbsp;\",\"doi\":\"10.1021/acsomega.5c06071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Ischemic stroke is a leading cause of disability worldwide and poses a serious threat to public health, affecting tens of millions of people all over the world per year. The lack of a humanized organ model reflecting the real situation of patients has quite limited the pathogenesis research and therapeutic drug development of ischemic stroke. In this study, we developed an ischemic stroke model based on a high-throughput microfluidic chip device, simulating ischemia-reperfusion injury in an ischemic stroke. In this ischemic stroke model, we observed a series of injury characteristics, including significant blood–brain barrier (BBB) destruction, cell apoptosis, and mitochondrial dysfunction. Transcriptome sequencing analysis showed that the expression of genes involved in autophagy, oxidative stress, angiogenesis, and other related pathways was significantly dysregulated in the ischemic stroke model. Drug screening experiments revealed that acetazolamide (AZA), edaravone (EDA), and fasudil (FAS) could significantly reduce the damage in an ischemic stroke model. Overall, the ischemic stroke model recapitulated the physiological and pathological responses of ischemic stroke, and it was innovative that our model focused on reperfusion injury using microfluidic organ-on-a-chip technology. This ischemic stroke brain model holds promise for advancing the development and testing of therapeutic drugs for ischemic stroke, thus contributing to the evolution of treatment strategies.</p>\",\"PeriodicalId\":22,\"journal\":{\"name\":\"ACS Omega\",\"volume\":\"10 39\",\"pages\":\"45680–45695\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acsomega.5c06071\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Omega\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsomega.5c06071\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.5c06071","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

缺血性中风是世界范围内导致残疾的主要原因,对公众健康构成严重威胁,每年影响到全世界数千万人。缺乏反映患者真实情况的人源化器官模型,极大地限制了缺血性脑卒中发病机制的研究和治疗药物的开发。在这项研究中,我们建立了一个基于高通量微流控芯片装置的缺血性脑卒中模型,模拟缺血性脑卒中的缺血再灌注损伤。在缺血性脑卒中模型中,我们观察到一系列损伤特征,包括明显的血脑屏障(BBB)破坏、细胞凋亡和线粒体功能障碍。转录组测序分析显示,在缺血性脑卒中模型中,参与自噬、氧化应激、血管生成等相关通路的基因表达明显失调。药物筛选实验显示,乙酰唑胺(AZA)、依达拉曲酮(EDA)和法舒地尔(FAS)可显著减轻缺血性脑卒中模型的损伤。总的来说,缺血性脑卒中模型再现了缺血性脑卒中的生理和病理反应,我们的模型采用微流控器官芯片技术关注再灌注损伤是一种创新。这种缺血性脑模型有望推进缺血性脑卒中治疗药物的开发和测试,从而促进治疗策略的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling Ischemia-Reperfusion Injury in Stroke Using the BBB Chip

Ischemic stroke is a leading cause of disability worldwide and poses a serious threat to public health, affecting tens of millions of people all over the world per year. The lack of a humanized organ model reflecting the real situation of patients has quite limited the pathogenesis research and therapeutic drug development of ischemic stroke. In this study, we developed an ischemic stroke model based on a high-throughput microfluidic chip device, simulating ischemia-reperfusion injury in an ischemic stroke. In this ischemic stroke model, we observed a series of injury characteristics, including significant blood–brain barrier (BBB) destruction, cell apoptosis, and mitochondrial dysfunction. Transcriptome sequencing analysis showed that the expression of genes involved in autophagy, oxidative stress, angiogenesis, and other related pathways was significantly dysregulated in the ischemic stroke model. Drug screening experiments revealed that acetazolamide (AZA), edaravone (EDA), and fasudil (FAS) could significantly reduce the damage in an ischemic stroke model. Overall, the ischemic stroke model recapitulated the physiological and pathological responses of ischemic stroke, and it was innovative that our model focused on reperfusion injury using microfluidic organ-on-a-chip technology. This ischemic stroke brain model holds promise for advancing the development and testing of therapeutic drugs for ischemic stroke, thus contributing to the evolution of treatment strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Omega
ACS Omega Chemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍: ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信