氮化钛的热鲁棒等离子体纳米环

IF 4.3 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
ACS Omega Pub Date : 2025-09-25 DOI:10.1021/acsomega.5c08679
Xavier Baami González, , , Paul Maurice Leidinger, , , Bruno Rente, , , Ryan Bower, , , Jeppe V. Lauritsen, , , Peter K. Petrov, , and , Duncan S. Sutherland*, 
{"title":"氮化钛的热鲁棒等离子体纳米环","authors":"Xavier Baami González,&nbsp;, ,&nbsp;Paul Maurice Leidinger,&nbsp;, ,&nbsp;Bruno Rente,&nbsp;, ,&nbsp;Ryan Bower,&nbsp;, ,&nbsp;Jeppe V. Lauritsen,&nbsp;, ,&nbsp;Peter K. Petrov,&nbsp;, and ,&nbsp;Duncan S. Sutherland*,&nbsp;","doi":"10.1021/acsomega.5c08679","DOIUrl":null,"url":null,"abstract":"<p >Plasmonic nanostructures are widely utilized in fields such as chemical sensing, photothermal therapy, and optoelectronics due to their ability to confine and enhance electromagnetic fields at the nanoscale. Among these, nanorings offer unique advantages owing to their hollow-core geometry, which supports multiple plasmonic modes and enables efficient analyte access. However, conventional plasmonic materials such as gold, silver, or copper suffer from poor thermal stability due to either oxidation or morphological degradation, rendering them unsuitable for high temperatures or chemically harsh environments. In this study, we investigate titanium nitride (TiN) as a robust alternative for the fabrication of thermally stable plasmonic nanorings. TiN combines metallic optical behavior in the visible to near-infrared range with excellent thermal, mechanical, and chemical stability, making it particularly suitable for harsh-environment sensing applications. Using Hole-mask Colloidal Lithography (HCL), a scalable and cost-effective bottom-up technique, we successfully fabricate well-defined TiN nanorings over large substrate areas. We further evaluated their structural and spectral resilience through annealing experiments conducted up to 400 °C in air. The results demonstrate that TiN nanorings maintain their morphology and localized surface plasmon resonance (LSPR) characteristics under elevated temperatures, in stark contrast to their noble-metal counterparts. This work establishes a reproducible, scalable route for producing refractory plasmonic nanostructures and highlights the potential of TiN nanorings for robust operation in high-temperature sensing platforms.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"10 39","pages":"46176–46187"},"PeriodicalIF":4.3000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsomega.5c08679","citationCount":"0","resultStr":"{\"title\":\"Thermally Robust Plasmonic Nanorings from Titanium Nitride\",\"authors\":\"Xavier Baami González,&nbsp;, ,&nbsp;Paul Maurice Leidinger,&nbsp;, ,&nbsp;Bruno Rente,&nbsp;, ,&nbsp;Ryan Bower,&nbsp;, ,&nbsp;Jeppe V. Lauritsen,&nbsp;, ,&nbsp;Peter K. Petrov,&nbsp;, and ,&nbsp;Duncan S. Sutherland*,&nbsp;\",\"doi\":\"10.1021/acsomega.5c08679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Plasmonic nanostructures are widely utilized in fields such as chemical sensing, photothermal therapy, and optoelectronics due to their ability to confine and enhance electromagnetic fields at the nanoscale. Among these, nanorings offer unique advantages owing to their hollow-core geometry, which supports multiple plasmonic modes and enables efficient analyte access. However, conventional plasmonic materials such as gold, silver, or copper suffer from poor thermal stability due to either oxidation or morphological degradation, rendering them unsuitable for high temperatures or chemically harsh environments. In this study, we investigate titanium nitride (TiN) as a robust alternative for the fabrication of thermally stable plasmonic nanorings. TiN combines metallic optical behavior in the visible to near-infrared range with excellent thermal, mechanical, and chemical stability, making it particularly suitable for harsh-environment sensing applications. Using Hole-mask Colloidal Lithography (HCL), a scalable and cost-effective bottom-up technique, we successfully fabricate well-defined TiN nanorings over large substrate areas. We further evaluated their structural and spectral resilience through annealing experiments conducted up to 400 °C in air. The results demonstrate that TiN nanorings maintain their morphology and localized surface plasmon resonance (LSPR) characteristics under elevated temperatures, in stark contrast to their noble-metal counterparts. This work establishes a reproducible, scalable route for producing refractory plasmonic nanostructures and highlights the potential of TiN nanorings for robust operation in high-temperature sensing platforms.</p>\",\"PeriodicalId\":22,\"journal\":{\"name\":\"ACS Omega\",\"volume\":\"10 39\",\"pages\":\"46176–46187\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acsomega.5c08679\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Omega\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsomega.5c08679\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.5c08679","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

等离子体纳米结构由于其在纳米尺度上限制和增强电磁场的能力而广泛应用于化学传感、光热治疗和光电子学等领域。其中,纳米钻具有独特的优势,由于其空心的几何形状,它支持多种等离子体模式,并能够有效地访问分析物。然而,传统的等离子体材料,如金、银或铜,由于氧化或形态降解,热稳定性差,使它们不适合高温或化学恶劣的环境。在这项研究中,我们研究了氮化钛(TiN)作为热稳定等离子体纳米材料的可靠替代品。TiN结合了可见光到近红外范围内的金属光学行为,具有优异的热、机械和化学稳定性,特别适用于恶劣环境的传感应用。利用孔掩膜胶体光刻技术(HCL),一种可扩展且具有成本效益的自下而上技术,我们成功地在大衬底区域上制造了定义良好的TiN纳米片。我们通过在空气中高达400°C的退火实验进一步评估了它们的结构和光谱弹性。结果表明,TiN纳米纳米片在高温下保持其形貌和局部表面等离子体共振(LSPR)特性,与贵金属纳米片形成鲜明对比。这项工作为生产难熔等离子体纳米结构建立了一种可重复的、可扩展的路线,并强调了TiN纳米材料在高温传感平台中稳健运行的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermally Robust Plasmonic Nanorings from Titanium Nitride

Plasmonic nanostructures are widely utilized in fields such as chemical sensing, photothermal therapy, and optoelectronics due to their ability to confine and enhance electromagnetic fields at the nanoscale. Among these, nanorings offer unique advantages owing to their hollow-core geometry, which supports multiple plasmonic modes and enables efficient analyte access. However, conventional plasmonic materials such as gold, silver, or copper suffer from poor thermal stability due to either oxidation or morphological degradation, rendering them unsuitable for high temperatures or chemically harsh environments. In this study, we investigate titanium nitride (TiN) as a robust alternative for the fabrication of thermally stable plasmonic nanorings. TiN combines metallic optical behavior in the visible to near-infrared range with excellent thermal, mechanical, and chemical stability, making it particularly suitable for harsh-environment sensing applications. Using Hole-mask Colloidal Lithography (HCL), a scalable and cost-effective bottom-up technique, we successfully fabricate well-defined TiN nanorings over large substrate areas. We further evaluated their structural and spectral resilience through annealing experiments conducted up to 400 °C in air. The results demonstrate that TiN nanorings maintain their morphology and localized surface plasmon resonance (LSPR) characteristics under elevated temperatures, in stark contrast to their noble-metal counterparts. This work establishes a reproducible, scalable route for producing refractory plasmonic nanostructures and highlights the potential of TiN nanorings for robust operation in high-temperature sensing platforms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Omega
ACS Omega Chemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍: ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信