用偶极子变化控制稀土/膦酸配合物中配体准分子的形成

IF 4.3 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
ACS Omega Pub Date : 2025-09-24 DOI:10.1021/acsomega.5c08830
Justin C. Johnson*, , , Ross E. Larsen*, , , Iskander Douair, , , Anastasia Kuvayskaya, , , Alan Sellinger, , and , Andrew Ferguson, 
{"title":"用偶极子变化控制稀土/膦酸配合物中配体准分子的形成","authors":"Justin C. Johnson*,&nbsp;, ,&nbsp;Ross E. Larsen*,&nbsp;, ,&nbsp;Iskander Douair,&nbsp;, ,&nbsp;Anastasia Kuvayskaya,&nbsp;, ,&nbsp;Alan Sellinger,&nbsp;, and ,&nbsp;Andrew Ferguson,&nbsp;","doi":"10.1021/acsomega.5c08830","DOIUrl":null,"url":null,"abstract":"<p >The interactions between substituted arylvinyl phosphonic acid (AVPA) ligands within a Eu-AVPA complex are shown to influence the outcomes of excited state evolution after photoexcitation. Compared with unfunctionalized AVPAs, pairs of ligands functionalized with CF<sub>3</sub> in the para position preassociate in the ground state of complexes with Eu<sup>3+</sup> according to calculated geometry optimizations. The CF<sub>3</sub>-substituted AVPA complexes show evidence of red-shifted optical absorption and undergo more efficient excimer formation, as revealed by transient absorption spectroscopy. We rationalize this behavior through simulations of excited-state geometry optimizations that reveal evolution toward interligand phenyl–phenyl planarity for specific excited states. Emission from complexed Eu<sup>3+</sup> after energy transfer from the ligand is found to be weaker with CF<sub>3</sub> substitution, which we hypothesize is due to intracomplex, interligand aggregates with excimer-promoting geometries. These observations point to the need to consider ground-state geometries as well as dynamic excited-state processes to understand the flow of energy in rare earth coordination complexes.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"10 39","pages":"46188–46196"},"PeriodicalIF":4.3000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsomega.5c08830","citationCount":"0","resultStr":"{\"title\":\"Controlling Ligand Excimer Formation with Dipole Changes in Emissive Rare-Earth/Phosphonic Acid Complexes\",\"authors\":\"Justin C. Johnson*,&nbsp;, ,&nbsp;Ross E. Larsen*,&nbsp;, ,&nbsp;Iskander Douair,&nbsp;, ,&nbsp;Anastasia Kuvayskaya,&nbsp;, ,&nbsp;Alan Sellinger,&nbsp;, and ,&nbsp;Andrew Ferguson,&nbsp;\",\"doi\":\"10.1021/acsomega.5c08830\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The interactions between substituted arylvinyl phosphonic acid (AVPA) ligands within a Eu-AVPA complex are shown to influence the outcomes of excited state evolution after photoexcitation. Compared with unfunctionalized AVPAs, pairs of ligands functionalized with CF<sub>3</sub> in the para position preassociate in the ground state of complexes with Eu<sup>3+</sup> according to calculated geometry optimizations. The CF<sub>3</sub>-substituted AVPA complexes show evidence of red-shifted optical absorption and undergo more efficient excimer formation, as revealed by transient absorption spectroscopy. We rationalize this behavior through simulations of excited-state geometry optimizations that reveal evolution toward interligand phenyl–phenyl planarity for specific excited states. Emission from complexed Eu<sup>3+</sup> after energy transfer from the ligand is found to be weaker with CF<sub>3</sub> substitution, which we hypothesize is due to intracomplex, interligand aggregates with excimer-promoting geometries. These observations point to the need to consider ground-state geometries as well as dynamic excited-state processes to understand the flow of energy in rare earth coordination complexes.</p>\",\"PeriodicalId\":22,\"journal\":{\"name\":\"ACS Omega\",\"volume\":\"10 39\",\"pages\":\"46188–46196\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acsomega.5c08830\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Omega\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsomega.5c08830\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.5c08830","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

取代芳基乙烯基膦酸(AVPA)配体在Eu-AVPA配合物中的相互作用影响光激发后激发态演化的结果。与未功能化的avpa相比,经几何优化计算,在对位预官能化的CF3对配体与Eu3+配合物在基态结合。瞬态吸收光谱显示,cf3取代的AVPA配合物具有明显的红移光学吸收,并能更有效地形成准分子。我们通过模拟激发态几何优化来合理化这种行为,揭示了特定激发态的配体间苯基-苯基平面性的进化。从配体转移能量后,发现CF3取代后络合Eu3+的发射较弱,我们假设这是由于具有促进准分子几何结构的复合物内,配体间聚集。这些观察结果表明,需要考虑基态几何以及动态激发态过程,以了解稀土配位配合物中的能量流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Controlling Ligand Excimer Formation with Dipole Changes in Emissive Rare-Earth/Phosphonic Acid Complexes

The interactions between substituted arylvinyl phosphonic acid (AVPA) ligands within a Eu-AVPA complex are shown to influence the outcomes of excited state evolution after photoexcitation. Compared with unfunctionalized AVPAs, pairs of ligands functionalized with CF3 in the para position preassociate in the ground state of complexes with Eu3+ according to calculated geometry optimizations. The CF3-substituted AVPA complexes show evidence of red-shifted optical absorption and undergo more efficient excimer formation, as revealed by transient absorption spectroscopy. We rationalize this behavior through simulations of excited-state geometry optimizations that reveal evolution toward interligand phenyl–phenyl planarity for specific excited states. Emission from complexed Eu3+ after energy transfer from the ligand is found to be weaker with CF3 substitution, which we hypothesize is due to intracomplex, interligand aggregates with excimer-promoting geometries. These observations point to the need to consider ground-state geometries as well as dynamic excited-state processes to understand the flow of energy in rare earth coordination complexes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Omega
ACS Omega Chemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍: ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信