基于机器学习驱动的多源数据挖掘的低页岩油重复压裂增产潜力评价

IF 4.3 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
ACS Omega Pub Date : 2025-09-27 DOI:10.1021/acsomega.5c06404
Penghu Bao, , , Gang Hui*, , , Jin Zhang, , , Muming Wang*, , , Hongbo Liang, , , Ruihan Zhang, , , Chenqi Ge, , , Zhiyang Pi, , , Ye Li, , , Yujie Zhang, , , Xing Yang, , , Yujie Zhang, , , Dan Wu, , , Yunli Lu, , and , Fei Gu, 
{"title":"基于机器学习驱动的多源数据挖掘的低页岩油重复压裂增产潜力评价","authors":"Penghu Bao,&nbsp;, ,&nbsp;Gang Hui*,&nbsp;, ,&nbsp;Jin Zhang,&nbsp;, ,&nbsp;Muming Wang*,&nbsp;, ,&nbsp;Hongbo Liang,&nbsp;, ,&nbsp;Ruihan Zhang,&nbsp;, ,&nbsp;Chenqi Ge,&nbsp;, ,&nbsp;Zhiyang Pi,&nbsp;, ,&nbsp;Ye Li,&nbsp;, ,&nbsp;Yujie Zhang,&nbsp;, ,&nbsp;Xing Yang,&nbsp;, ,&nbsp;Yujie Zhang,&nbsp;, ,&nbsp;Dan Wu,&nbsp;, ,&nbsp;Yunli Lu,&nbsp;, and ,&nbsp;Fei Gu,&nbsp;","doi":"10.1021/acsomega.5c06404","DOIUrl":null,"url":null,"abstract":"<p >As shale reservoir development progresses, the share of low-producing horizontal wells grows, and the need for repeated-fracturing technology becomes more essential. Accurately evaluating the production potential is crucial for determining the efficacy of refracturing. This work proposes a novel method for assessing the repeated-fracturing potential of low-producing horizontal wells that combines the fine screening of important controlling parameters with an optimized XGBoost algorithm (<i>R</i><sup>2</sup> = 0.904 on test data). A multisource data set of 149 wells and 27 geological-engineering parameters is generated. Through a comparison of seven machine learning algorithms, the XGBoost algorithm outperformed the others in prediction performance. Six critical control parameters were found using feature priority ranking and variance inflation factor analysis: repeated-fracturing fluid injection volume and injection intensity, single-well-controlled geological reserves, fluid volume, length of the drilled oil-bearing formation, and number of repeated fracturing stages. Using the optimized XGBoost model, the potential of 29 additional candidate wells was assessed. The results indicate that two wells, X238-77 and Y3, exhibit considerable production increases and thus should be prioritized for repeat fracturing and reforming. Specific development plans for the remaining 27 wells are required according to their potential index rankings. This research provides a theoretical foundation and technical support for optimizing refracturing decisions, which is conducive to the efficient development of shale oil.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"10 39","pages":"45840–45854"},"PeriodicalIF":4.3000,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsomega.5c06404","citationCount":"0","resultStr":"{\"title\":\"Production-Increase Potential Evaluations after Refracturing Low-Shale-Oil-Producing Wells via Machine-Learning-Driven Multisource Data Mining\",\"authors\":\"Penghu Bao,&nbsp;, ,&nbsp;Gang Hui*,&nbsp;, ,&nbsp;Jin Zhang,&nbsp;, ,&nbsp;Muming Wang*,&nbsp;, ,&nbsp;Hongbo Liang,&nbsp;, ,&nbsp;Ruihan Zhang,&nbsp;, ,&nbsp;Chenqi Ge,&nbsp;, ,&nbsp;Zhiyang Pi,&nbsp;, ,&nbsp;Ye Li,&nbsp;, ,&nbsp;Yujie Zhang,&nbsp;, ,&nbsp;Xing Yang,&nbsp;, ,&nbsp;Yujie Zhang,&nbsp;, ,&nbsp;Dan Wu,&nbsp;, ,&nbsp;Yunli Lu,&nbsp;, and ,&nbsp;Fei Gu,&nbsp;\",\"doi\":\"10.1021/acsomega.5c06404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >As shale reservoir development progresses, the share of low-producing horizontal wells grows, and the need for repeated-fracturing technology becomes more essential. Accurately evaluating the production potential is crucial for determining the efficacy of refracturing. This work proposes a novel method for assessing the repeated-fracturing potential of low-producing horizontal wells that combines the fine screening of important controlling parameters with an optimized XGBoost algorithm (<i>R</i><sup>2</sup> = 0.904 on test data). A multisource data set of 149 wells and 27 geological-engineering parameters is generated. Through a comparison of seven machine learning algorithms, the XGBoost algorithm outperformed the others in prediction performance. Six critical control parameters were found using feature priority ranking and variance inflation factor analysis: repeated-fracturing fluid injection volume and injection intensity, single-well-controlled geological reserves, fluid volume, length of the drilled oil-bearing formation, and number of repeated fracturing stages. Using the optimized XGBoost model, the potential of 29 additional candidate wells was assessed. The results indicate that two wells, X238-77 and Y3, exhibit considerable production increases and thus should be prioritized for repeat fracturing and reforming. Specific development plans for the remaining 27 wells are required according to their potential index rankings. This research provides a theoretical foundation and technical support for optimizing refracturing decisions, which is conducive to the efficient development of shale oil.</p>\",\"PeriodicalId\":22,\"journal\":{\"name\":\"ACS Omega\",\"volume\":\"10 39\",\"pages\":\"45840–45854\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acsomega.5c06404\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Omega\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsomega.5c06404\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.5c06404","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

随着页岩储层开发的深入,低产水平井的比例越来越大,对重复压裂技术的需求变得更加迫切。准确评估生产潜力对于确定重复压裂的效果至关重要。该研究提出了一种评估低产水平井重复压裂潜力的新方法,该方法将重要控制参数的精细筛选与优化的XGBoost算法相结合(测试数据R2 = 0.904)。生成了149口井和27个地质工程参数的多源数据集。通过对7种机器学习算法的比较,XGBoost算法在预测性能上优于其他算法。通过特征优先级排序和方差膨胀因子分析,确定了6个关键控制参数:重复压裂液注入量和注入强度、单井控地质储量、流体体积、钻探含油地层长度和重复压裂段数。利用优化后的XGBoost模型,对另外29口候选井的潜力进行了评估。结果表明,X238-77和Y3两口井产量显著增加,应优先进行重复压裂改造。根据剩余27口井的潜力指数排名,需要制定具体的开发计划。研究结果为优化重复压裂决策提供了理论依据和技术支撑,有利于页岩油高效开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Production-Increase Potential Evaluations after Refracturing Low-Shale-Oil-Producing Wells via Machine-Learning-Driven Multisource Data Mining

As shale reservoir development progresses, the share of low-producing horizontal wells grows, and the need for repeated-fracturing technology becomes more essential. Accurately evaluating the production potential is crucial for determining the efficacy of refracturing. This work proposes a novel method for assessing the repeated-fracturing potential of low-producing horizontal wells that combines the fine screening of important controlling parameters with an optimized XGBoost algorithm (R2 = 0.904 on test data). A multisource data set of 149 wells and 27 geological-engineering parameters is generated. Through a comparison of seven machine learning algorithms, the XGBoost algorithm outperformed the others in prediction performance. Six critical control parameters were found using feature priority ranking and variance inflation factor analysis: repeated-fracturing fluid injection volume and injection intensity, single-well-controlled geological reserves, fluid volume, length of the drilled oil-bearing formation, and number of repeated fracturing stages. Using the optimized XGBoost model, the potential of 29 additional candidate wells was assessed. The results indicate that two wells, X238-77 and Y3, exhibit considerable production increases and thus should be prioritized for repeat fracturing and reforming. Specific development plans for the remaining 27 wells are required according to their potential index rankings. This research provides a theoretical foundation and technical support for optimizing refracturing decisions, which is conducive to the efficient development of shale oil.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Omega
ACS Omega Chemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍: ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信