超临界甲基环己烷脱氢动力学评价:实验与CFD模型

IF 4.3 2区 工程技术 Q2 ENGINEERING, CHEMICAL
Zehao Han, Jixiao Li, Hao Peng, Linlin Liu, Ying Xu, Ruijie Gao, Kang Xue, Xiaolei Guo, Xiangwen Zhang, Ji-Jun Zou, Lun Pan
{"title":"超临界甲基环己烷脱氢动力学评价:实验与CFD模型","authors":"Zehao Han, Jixiao Li, Hao Peng, Linlin Liu, Ying Xu, Ruijie Gao, Kang Xue, Xiaolei Guo, Xiangwen Zhang, Ji-Jun Zou, Lun Pan","doi":"10.1016/j.ces.2025.122740","DOIUrl":null,"url":null,"abstract":"To address hypersonic vehicle thermal management via endothermic dehydrogenation, this work studies methylcyclohexane (MCH) dehydrogenation kinetic over Pt/SiO<sub>2</sub> under supercritical conditions. Power-law modeling shows a near-zero MCH order, with hydrogen promoting cracking and isomerization. A Langmuir-Hinshelwood-Hougen-Watson (LHHW) model accurately describes dehydrogenation and cracking (R<sup>2</sup> &gt; 0.95), identifying the first H<sub>2</sub> loss and surface reaction as their respective rate-determining steps, but fails for isomerization. An optimal hybrid LHHW/power-law model for dehydrogenation and side-reactions (R<sup>2</sup> = 0.97, MSE &lt; 10<sup>–5</sup>) is developed. CFD simulations using this kinetics reveal radial temperature gradients exceeding axial variations, intensifying at high wall temperatures. Cold spot position depends primarily on space velocity, while its temperature responds mainly to wall heating. This advances optimization strategies for catalytic reactors and thermal management.","PeriodicalId":271,"journal":{"name":"Chemical Engineering Science","volume":"74 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kinetic assessment of supercritical methylcyclohexane dehydrogenation: Experimental and CFD modeling\",\"authors\":\"Zehao Han, Jixiao Li, Hao Peng, Linlin Liu, Ying Xu, Ruijie Gao, Kang Xue, Xiaolei Guo, Xiangwen Zhang, Ji-Jun Zou, Lun Pan\",\"doi\":\"10.1016/j.ces.2025.122740\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To address hypersonic vehicle thermal management via endothermic dehydrogenation, this work studies methylcyclohexane (MCH) dehydrogenation kinetic over Pt/SiO<sub>2</sub> under supercritical conditions. Power-law modeling shows a near-zero MCH order, with hydrogen promoting cracking and isomerization. A Langmuir-Hinshelwood-Hougen-Watson (LHHW) model accurately describes dehydrogenation and cracking (R<sup>2</sup> &gt; 0.95), identifying the first H<sub>2</sub> loss and surface reaction as their respective rate-determining steps, but fails for isomerization. An optimal hybrid LHHW/power-law model for dehydrogenation and side-reactions (R<sup>2</sup> = 0.97, MSE &lt; 10<sup>–5</sup>) is developed. CFD simulations using this kinetics reveal radial temperature gradients exceeding axial variations, intensifying at high wall temperatures. Cold spot position depends primarily on space velocity, while its temperature responds mainly to wall heating. This advances optimization strategies for catalytic reactors and thermal management.\",\"PeriodicalId\":271,\"journal\":{\"name\":\"Chemical Engineering Science\",\"volume\":\"74 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ces.2025.122740\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.ces.2025.122740","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

为了解决高超声速飞行器吸热脱氢的热管理问题,本文研究了超临界条件下甲基环己烷(MCH)在Pt/SiO2上的脱氢动力学。幂律模型显示MCH顺序接近于零,氢促进了裂解和异构化。Langmuir-Hinshelwood-Hougen-Watson (LHHW)模型准确地描述了脱氢和裂化(R2 >; 0.95),确定了第一个H2损失和表面反应是它们各自的速率决定步骤,但未能实现异构化。建立了脱氢和副反应的最佳LHHW/幂律混合模型(R2 = 0.97,MSE <; 10-5)。利用这一动力学进行的CFD模拟显示,径向温度梯度超过轴向变化,在高壁面温度下加剧。冷点位置主要取决于空间速度,而冷点温度主要与壁面加热有关。这推进了催化反应器和热管理的优化策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Kinetic assessment of supercritical methylcyclohexane dehydrogenation: Experimental and CFD modeling

Kinetic assessment of supercritical methylcyclohexane dehydrogenation: Experimental and CFD modeling
To address hypersonic vehicle thermal management via endothermic dehydrogenation, this work studies methylcyclohexane (MCH) dehydrogenation kinetic over Pt/SiO2 under supercritical conditions. Power-law modeling shows a near-zero MCH order, with hydrogen promoting cracking and isomerization. A Langmuir-Hinshelwood-Hougen-Watson (LHHW) model accurately describes dehydrogenation and cracking (R2 > 0.95), identifying the first H2 loss and surface reaction as their respective rate-determining steps, but fails for isomerization. An optimal hybrid LHHW/power-law model for dehydrogenation and side-reactions (R2 = 0.97, MSE < 10–5) is developed. CFD simulations using this kinetics reveal radial temperature gradients exceeding axial variations, intensifying at high wall temperatures. Cold spot position depends primarily on space velocity, while its temperature responds mainly to wall heating. This advances optimization strategies for catalytic reactors and thermal management.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Engineering Science
Chemical Engineering Science 工程技术-工程:化工
CiteScore
7.50
自引率
8.50%
发文量
1025
审稿时长
50 days
期刊介绍: Chemical engineering enables the transformation of natural resources and energy into useful products for society. It draws on and applies natural sciences, mathematics and economics, and has developed fundamental engineering science that underpins the discipline. Chemical Engineering Science (CES) has been publishing papers on the fundamentals of chemical engineering since 1951. CES is the platform where the most significant advances in the discipline have ever since been published. Chemical Engineering Science has accompanied and sustained chemical engineering through its development into the vibrant and broad scientific discipline it is today.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信