二维范德华异质结构中非互易非线性吸收和界面电荷转移的全光二极管

IF 6.7 1区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Erkang Li, , , Jinhong Liu, , , Yanqing Ge, , , Mingjian Shi, , , Yijie Wang, , , Chunhui Lu*, , , Yixuan Zhou*, , and , Xinlong Xu*, 
{"title":"二维范德华异质结构中非互易非线性吸收和界面电荷转移的全光二极管","authors":"Erkang Li,&nbsp;, ,&nbsp;Jinhong Liu,&nbsp;, ,&nbsp;Yanqing Ge,&nbsp;, ,&nbsp;Mingjian Shi,&nbsp;, ,&nbsp;Yijie Wang,&nbsp;, ,&nbsp;Chunhui Lu*,&nbsp;, ,&nbsp;Yixuan Zhou*,&nbsp;, and ,&nbsp;Xinlong Xu*,&nbsp;","doi":"10.1021/acsphotonics.5c01505","DOIUrl":null,"url":null,"abstract":"<p >Nonreciprocity is fundamental to photonic and optoelectronic devices, such as all-optical diodes, for ultrafast optical signal processing. However, previous studies on nonreciprocity have been mainly based on linear optical responses rather than on nonlinear optical responses in recently developed two-dimensional (2D) van der Waals heterostructures. Herein, an all-optical diode prototype based on nonreciprocal nonlinear absorption and interfacial charge transfer is proposed and designed using both simulations and experiments based on readily available van der Waals heterostructures. The giant saturable absorption from 2D MXenes (NbC) and reverse saturable absorption from 2D chalcogenides (GaS) play a synergistic role in the designed all-optical diodes, which are characterized by a femtosecond laser-based Z-scan system. The comprehensive physical mechanism of this all-optical diode based on a 2D van der Waals NbC/GaS heterostructure designed by simulations is consistent with experiments, considering both nonreciprocal nonlinear absorption and interfacial effects. This all-optical diode based on a 2D van der Waals heterostructure features simplicity, scalability, stability, integration, and compatibility with complementary planar fabrication technology, which can further extend and miniaturize nonlinear photonic and optoelectric devices.</p>","PeriodicalId":23,"journal":{"name":"ACS Photonics","volume":"12 10","pages":"5705–5715"},"PeriodicalIF":6.7000,"publicationDate":"2025-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"All-Optical Diodes via Nonreciprocal Nonlinear Absorption and Interfacial Charge Transfer in Two-Dimensional van der Waals Heterostructures\",\"authors\":\"Erkang Li,&nbsp;, ,&nbsp;Jinhong Liu,&nbsp;, ,&nbsp;Yanqing Ge,&nbsp;, ,&nbsp;Mingjian Shi,&nbsp;, ,&nbsp;Yijie Wang,&nbsp;, ,&nbsp;Chunhui Lu*,&nbsp;, ,&nbsp;Yixuan Zhou*,&nbsp;, and ,&nbsp;Xinlong Xu*,&nbsp;\",\"doi\":\"10.1021/acsphotonics.5c01505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Nonreciprocity is fundamental to photonic and optoelectronic devices, such as all-optical diodes, for ultrafast optical signal processing. However, previous studies on nonreciprocity have been mainly based on linear optical responses rather than on nonlinear optical responses in recently developed two-dimensional (2D) van der Waals heterostructures. Herein, an all-optical diode prototype based on nonreciprocal nonlinear absorption and interfacial charge transfer is proposed and designed using both simulations and experiments based on readily available van der Waals heterostructures. The giant saturable absorption from 2D MXenes (NbC) and reverse saturable absorption from 2D chalcogenides (GaS) play a synergistic role in the designed all-optical diodes, which are characterized by a femtosecond laser-based Z-scan system. The comprehensive physical mechanism of this all-optical diode based on a 2D van der Waals NbC/GaS heterostructure designed by simulations is consistent with experiments, considering both nonreciprocal nonlinear absorption and interfacial effects. This all-optical diode based on a 2D van der Waals heterostructure features simplicity, scalability, stability, integration, and compatibility with complementary planar fabrication technology, which can further extend and miniaturize nonlinear photonic and optoelectric devices.</p>\",\"PeriodicalId\":23,\"journal\":{\"name\":\"ACS Photonics\",\"volume\":\"12 10\",\"pages\":\"5705–5715\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Photonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsphotonics.5c01505\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Photonics","FirstCategoryId":"101","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsphotonics.5c01505","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

非互易性是光子和光电子器件,如全光二极管,用于超快光信号处理的基础。然而,以往关于非互易性的研究主要是基于线性光学响应,而不是基于二维范德华异质结构的非线性光学响应。本文提出了一种基于非互易非线性吸收和界面电荷转移的全光二极管原型,并基于现有的范德华异质结构,采用模拟和实验相结合的方法进行了设计。二维MXenes (NbC)的巨大可饱和吸收和二维硫族化合物(GaS)的反向可饱和吸收在设计的全光二极管中发挥协同作用,并用飞秒激光z扫描系统对其进行表征。在考虑非互易非线性吸收和界面效应的情况下,模拟设计的基于二维范德华NbC/GaS异质结构的全光二极管的综合物理机制与实验结果一致。这种基于二维范德华异质结构的全光二极管具有简单、可扩展、稳定、集成以及与互补平面制造技术兼容的特点,可以进一步扩展和小型化非线性光子和光电器件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

All-Optical Diodes via Nonreciprocal Nonlinear Absorption and Interfacial Charge Transfer in Two-Dimensional van der Waals Heterostructures

All-Optical Diodes via Nonreciprocal Nonlinear Absorption and Interfacial Charge Transfer in Two-Dimensional van der Waals Heterostructures

All-Optical Diodes via Nonreciprocal Nonlinear Absorption and Interfacial Charge Transfer in Two-Dimensional van der Waals Heterostructures

Nonreciprocity is fundamental to photonic and optoelectronic devices, such as all-optical diodes, for ultrafast optical signal processing. However, previous studies on nonreciprocity have been mainly based on linear optical responses rather than on nonlinear optical responses in recently developed two-dimensional (2D) van der Waals heterostructures. Herein, an all-optical diode prototype based on nonreciprocal nonlinear absorption and interfacial charge transfer is proposed and designed using both simulations and experiments based on readily available van der Waals heterostructures. The giant saturable absorption from 2D MXenes (NbC) and reverse saturable absorption from 2D chalcogenides (GaS) play a synergistic role in the designed all-optical diodes, which are characterized by a femtosecond laser-based Z-scan system. The comprehensive physical mechanism of this all-optical diode based on a 2D van der Waals NbC/GaS heterostructure designed by simulations is consistent with experiments, considering both nonreciprocal nonlinear absorption and interfacial effects. This all-optical diode based on a 2D van der Waals heterostructure features simplicity, scalability, stability, integration, and compatibility with complementary planar fabrication technology, which can further extend and miniaturize nonlinear photonic and optoelectric devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Photonics
ACS Photonics NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.90
自引率
5.70%
发文量
438
审稿时长
2.3 months
期刊介绍: Published as soon as accepted and summarized in monthly issues, ACS Photonics will publish Research Articles, Letters, Perspectives, and Reviews, to encompass the full scope of published research in this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信