杂化磁态下超薄Fe3Co2.5GeTe2纳米片的室温反铁磁性。

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-10-05 DOI:10.1021/acsnano.5c09125
W. L. Qubie, , , Xu Bai, , , Zhi Wang, , , Yiming Zhang, , , Xinlong Yang, , , Tianyang Yao, , and , Junli Zhang*, 
{"title":"杂化磁态下超薄Fe3Co2.5GeTe2纳米片的室温反铁磁性。","authors":"W. L. Qubie,&nbsp;, ,&nbsp;Xu Bai,&nbsp;, ,&nbsp;Zhi Wang,&nbsp;, ,&nbsp;Yiming Zhang,&nbsp;, ,&nbsp;Xinlong Yang,&nbsp;, ,&nbsp;Tianyang Yao,&nbsp;, and ,&nbsp;Junli Zhang*,&nbsp;","doi":"10.1021/acsnano.5c09125","DOIUrl":null,"url":null,"abstract":"<p >The development of van der Waals (vdW) magnetic materials with robust magnetic ordering above room temperature is critical for advancing spintronic technologies. Here, we demonstrate a doping-engineered strategy to create Fe<sub>3</sub>Co<sub>2.5</sub>GeTe<sub>2</sub>, a vdW crystal with an exceptionally high Néel temperature (<i>T</i><sub>N</sub>) of 361 K. Through targeted Co-substitution, we transform the parent ferromagnet Fe<sub>5</sub>GeTe<sub>2</sub> into a complex hybrid magnetic state, characterized by intralayer ferrimagnetism coexisting with interlayer antiferromagnetism. This unique ground state is unambiguously confirmed by its hallmark experimental signatures: a characteristic two-step spin-flip transition and a small remanent magnetization, observed in both bulk magnetometry and nanoscale anomalous Hall effect measurements. Crucially, we show that this hybrid magnetic order is robust in the 2D limit, with the spin-flip signature persisting in devices as thin as 9 nm and the magnetic ordering remaining stable up to 330 K. Our findings position Fe<sub>3</sub>Co<sub>2.5</sub>GeTe<sub>2</sub> as a premier platform for high-temperature antiferromagnetic spintronics and validate chemical substitution as a powerful method for designing complex magnetic states in vdW materials.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 41","pages":"36285–36293"},"PeriodicalIF":16.0000,"publicationDate":"2025-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Above-Room-Temperature Antiferromagnetism in Ultrathin Fe3Co2.5GeTe2 Nanosheets Enabled by a Hybrid Magnetic State\",\"authors\":\"W. L. Qubie,&nbsp;, ,&nbsp;Xu Bai,&nbsp;, ,&nbsp;Zhi Wang,&nbsp;, ,&nbsp;Yiming Zhang,&nbsp;, ,&nbsp;Xinlong Yang,&nbsp;, ,&nbsp;Tianyang Yao,&nbsp;, and ,&nbsp;Junli Zhang*,&nbsp;\",\"doi\":\"10.1021/acsnano.5c09125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The development of van der Waals (vdW) magnetic materials with robust magnetic ordering above room temperature is critical for advancing spintronic technologies. Here, we demonstrate a doping-engineered strategy to create Fe<sub>3</sub>Co<sub>2.5</sub>GeTe<sub>2</sub>, a vdW crystal with an exceptionally high Néel temperature (<i>T</i><sub>N</sub>) of 361 K. Through targeted Co-substitution, we transform the parent ferromagnet Fe<sub>5</sub>GeTe<sub>2</sub> into a complex hybrid magnetic state, characterized by intralayer ferrimagnetism coexisting with interlayer antiferromagnetism. This unique ground state is unambiguously confirmed by its hallmark experimental signatures: a characteristic two-step spin-flip transition and a small remanent magnetization, observed in both bulk magnetometry and nanoscale anomalous Hall effect measurements. Crucially, we show that this hybrid magnetic order is robust in the 2D limit, with the spin-flip signature persisting in devices as thin as 9 nm and the magnetic ordering remaining stable up to 330 K. Our findings position Fe<sub>3</sub>Co<sub>2.5</sub>GeTe<sub>2</sub> as a premier platform for high-temperature antiferromagnetic spintronics and validate chemical substitution as a powerful method for designing complex magnetic states in vdW materials.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"19 41\",\"pages\":\"36285–36293\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.5c09125\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.5c09125","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

室温以上磁有序的范德华(vdW)磁性材料的发展对于推进自旋电子技术至关重要。在这里,我们展示了一种掺杂工程策略,以创建Fe3Co2.5GeTe2,这是一种具有361 K异常高nsamel温度(TN)的vdW晶体。通过有针对性的共取代,我们将母铁磁体Fe5GeTe2转变为复杂的杂化磁态,其特征是层内铁磁性与层间反铁磁性共存。这种独特的基态通过其标志性的实验特征得到了明确的证实:在体磁强计和纳米尺度的异常霍尔效应测量中观察到一个特征的两步自旋翻转转变和小的剩余磁化。至关重要的是,我们证明了这种混合磁顺序在2D极限下是稳健的,自旋翻转特征在薄至9 nm的器件中持续存在,并且磁顺序在330 K下保持稳定。我们的研究结果将Fe3Co2.5GeTe2定位为高温反铁磁自旋电子学的首选平台,并验证了化学取代是设计vdW材料中复杂磁态的有力方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Above-Room-Temperature Antiferromagnetism in Ultrathin Fe3Co2.5GeTe2 Nanosheets Enabled by a Hybrid Magnetic State

Above-Room-Temperature Antiferromagnetism in Ultrathin Fe3Co2.5GeTe2 Nanosheets Enabled by a Hybrid Magnetic State

The development of van der Waals (vdW) magnetic materials with robust magnetic ordering above room temperature is critical for advancing spintronic technologies. Here, we demonstrate a doping-engineered strategy to create Fe3Co2.5GeTe2, a vdW crystal with an exceptionally high Néel temperature (TN) of 361 K. Through targeted Co-substitution, we transform the parent ferromagnet Fe5GeTe2 into a complex hybrid magnetic state, characterized by intralayer ferrimagnetism coexisting with interlayer antiferromagnetism. This unique ground state is unambiguously confirmed by its hallmark experimental signatures: a characteristic two-step spin-flip transition and a small remanent magnetization, observed in both bulk magnetometry and nanoscale anomalous Hall effect measurements. Crucially, we show that this hybrid magnetic order is robust in the 2D limit, with the spin-flip signature persisting in devices as thin as 9 nm and the magnetic ordering remaining stable up to 330 K. Our findings position Fe3Co2.5GeTe2 as a premier platform for high-temperature antiferromagnetic spintronics and validate chemical substitution as a powerful method for designing complex magnetic states in vdW materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信