时空温度控制的全息加热显微镜揭示细胞热敏钙信号

IF 5.4 2区 工程技术 Q1 BIOCHEMICAL RESEARCH METHODS
Lab on a Chip Pub Date : 2025-10-06 DOI:10.1039/d5lc00675a
Kotaro Oyama, Ayumi Ishii, Shuhei Matsumura, Tomoko G. Oyama, Mitsumasa Taguchi, Madoka Suzuki
{"title":"时空温度控制的全息加热显微镜揭示细胞热敏钙信号","authors":"Kotaro Oyama, Ayumi Ishii, Shuhei Matsumura, Tomoko G. Oyama, Mitsumasa Taguchi, Madoka Suzuki","doi":"10.1039/d5lc00675a","DOIUrl":null,"url":null,"abstract":"Optical microheating technologies have revealed how biological systems sense heating and cooling at the microscopic scale. Sensing is based on thermosensitive biochemical reactions that frequently engage membrane proteins, Ca<small><sup>2+</sup></small> channels, and pumps to convert sensing information as the Ca<small><sup>2+</sup></small> signalling in cells. These findings highlight the feasibility of thermally manipulating intracellular Ca<small><sup>2+</sup></small> signalling. However, how the thermosensitive Ca<small><sup>2+</sup></small> signalling would behave, particularly in multicellular systems, remains elusive. In this study, to extend the ability of the spatiotemporal temperature control by optical microheating technologies, we propose holographic heating microscopy. Water-absorbable infrared (IR) laser light is modulated by a reflective liquid crystal on a silicon spatial light modulator (LCOS-SLM). A computer-generated hologram displayed on the LCOS-SLM modulates the spatial phase pattern of the IR laser light to generate predesigned temperature gradients at the microscope focal plane. The holographic heating microscopy visualises how thermosensitive Ca<small><sup>2+</sup></small> signalling is generated and propagated in MDCK cells, rat hippocampal neurons, and rat neonatal cardiomyocytes. Moreover, the optical control of the temporal temperature gradient reveals the cooling-rate dependency of Ca<small><sup>2+</sup></small> signalling in HeLa cells. These findings demonstrate the extended ability of holographic heating microscopy in investigating cellular thermosensitivities and thermally manipulating cellular functions.","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":"4 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatiotemporal temperature control by holographic heating microscopy unveils cellular thermosensitive calcium signalling\",\"authors\":\"Kotaro Oyama, Ayumi Ishii, Shuhei Matsumura, Tomoko G. Oyama, Mitsumasa Taguchi, Madoka Suzuki\",\"doi\":\"10.1039/d5lc00675a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optical microheating technologies have revealed how biological systems sense heating and cooling at the microscopic scale. Sensing is based on thermosensitive biochemical reactions that frequently engage membrane proteins, Ca<small><sup>2+</sup></small> channels, and pumps to convert sensing information as the Ca<small><sup>2+</sup></small> signalling in cells. These findings highlight the feasibility of thermally manipulating intracellular Ca<small><sup>2+</sup></small> signalling. However, how the thermosensitive Ca<small><sup>2+</sup></small> signalling would behave, particularly in multicellular systems, remains elusive. In this study, to extend the ability of the spatiotemporal temperature control by optical microheating technologies, we propose holographic heating microscopy. Water-absorbable infrared (IR) laser light is modulated by a reflective liquid crystal on a silicon spatial light modulator (LCOS-SLM). A computer-generated hologram displayed on the LCOS-SLM modulates the spatial phase pattern of the IR laser light to generate predesigned temperature gradients at the microscope focal plane. The holographic heating microscopy visualises how thermosensitive Ca<small><sup>2+</sup></small> signalling is generated and propagated in MDCK cells, rat hippocampal neurons, and rat neonatal cardiomyocytes. Moreover, the optical control of the temporal temperature gradient reveals the cooling-rate dependency of Ca<small><sup>2+</sup></small> signalling in HeLa cells. These findings demonstrate the extended ability of holographic heating microscopy in investigating cellular thermosensitivities and thermally manipulating cellular functions.\",\"PeriodicalId\":85,\"journal\":{\"name\":\"Lab on a Chip\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lab on a Chip\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1039/d5lc00675a\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lab on a Chip","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1039/d5lc00675a","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

光学微加热技术揭示了生物系统如何在微观尺度上感知加热和冷却。传感是基于热敏生化反应,经常参与膜蛋白,Ca2+通道和泵转换传感信息作为细胞中的Ca2+信号。这些发现强调了热操纵细胞内Ca2+信号的可行性。然而,热敏Ca2+信号如何表现,特别是在多细胞系统中,仍然难以捉摸。在本研究中,为了扩展光学微加热技术的时空温度控制能力,我们提出了全息加热显微镜。利用硅空间光调制器(LCOS-SLM)上的反射液晶对可吸水的红外激光进行调制。显示在LCOS-SLM上的计算机生成全息图调制红外激光的空间相位模式,以在显微镜焦平面上产生预先设计的温度梯度。全息加热显微镜显示了热敏Ca2+信号是如何在MDCK细胞、大鼠海马神经元和大鼠新生心肌细胞中产生和传播的。此外,时间温度梯度的光学控制揭示了HeLa细胞中Ca2+信号的冷却速率依赖性。这些发现证明了全息加热显微镜在研究细胞热敏性和热操纵细胞功能方面的扩展能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Spatiotemporal temperature control by holographic heating microscopy unveils cellular thermosensitive calcium signalling

Spatiotemporal temperature control by holographic heating microscopy unveils cellular thermosensitive calcium signalling
Optical microheating technologies have revealed how biological systems sense heating and cooling at the microscopic scale. Sensing is based on thermosensitive biochemical reactions that frequently engage membrane proteins, Ca2+ channels, and pumps to convert sensing information as the Ca2+ signalling in cells. These findings highlight the feasibility of thermally manipulating intracellular Ca2+ signalling. However, how the thermosensitive Ca2+ signalling would behave, particularly in multicellular systems, remains elusive. In this study, to extend the ability of the spatiotemporal temperature control by optical microheating technologies, we propose holographic heating microscopy. Water-absorbable infrared (IR) laser light is modulated by a reflective liquid crystal on a silicon spatial light modulator (LCOS-SLM). A computer-generated hologram displayed on the LCOS-SLM modulates the spatial phase pattern of the IR laser light to generate predesigned temperature gradients at the microscope focal plane. The holographic heating microscopy visualises how thermosensitive Ca2+ signalling is generated and propagated in MDCK cells, rat hippocampal neurons, and rat neonatal cardiomyocytes. Moreover, the optical control of the temporal temperature gradient reveals the cooling-rate dependency of Ca2+ signalling in HeLa cells. These findings demonstrate the extended ability of holographic heating microscopy in investigating cellular thermosensitivities and thermally manipulating cellular functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Lab on a Chip
Lab on a Chip 工程技术-化学综合
CiteScore
11.10
自引率
8.20%
发文量
434
审稿时长
2.6 months
期刊介绍: Lab on a Chip is the premiere journal that publishes cutting-edge research in the field of miniaturization. By their very nature, microfluidic/nanofluidic/miniaturized systems are at the intersection of disciplines, spanning fundamental research to high-end application, which is reflected by the broad readership of the journal. Lab on a Chip publishes two types of papers on original research: full-length research papers and communications. Papers should demonstrate innovations, which can come from technical advancements or applications addressing pressing needs in globally important areas. The journal also publishes Comments, Reviews, and Perspectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信