金属离子活性磁性纳米探针用于MRI检测恶性肿瘤中的Cu2+水平。

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-10-06 DOI:10.1002/smll.202507307
Yuehao Gan,Qiyue Wang,Hui Du,Yuqi Wang,Dao Shi,Longfei Pan,Daishun Ling,Fangyuan Li
{"title":"金属离子活性磁性纳米探针用于MRI检测恶性肿瘤中的Cu2+水平。","authors":"Yuehao Gan,Qiyue Wang,Hui Du,Yuqi Wang,Dao Shi,Longfei Pan,Daishun Ling,Fangyuan Li","doi":"10.1002/smll.202507307","DOIUrl":null,"url":null,"abstract":"Metal ions are essential for enzymatic regulation, redox balance, and signal transduction, with dysregulation increasingly implicated in cancer, neurodegeneration, and inflammation. Copper ions (Cu2+), in particular, are closely associated with tumor progression and malignancy. However, conventional binding-based magnetic resonance imaging (MRI) probes lack the sensitivity to detect trace metal ion fluctuations in vivo. Here, a metal-ion-activity magnetic (MIAM) nanoprobe is reported that integrates activity-based chemical sensing with magnetic resonance energy transfer for signal amplification. MIAM nanoprobe consists of superparamagnetic iron oxide nanoparticles (SPIONs) linked to gadoteric acid (Gd-DOTA) via a Cu2+-cleavable adipic acid dihydrazide moiety. The T1-MRI signal is initially quenched as SPIONs suppress Gd-DOTA's relaxivity. Upon exposure to elevated Cu2+, Cu2+-catalyzed reaction breaks the covalent bond in the MIAM nanoprobe and then releases free Gd-DOTA, resulting in an activated T1-MRI signal. The catalytic nature of this reaction enables multiple turnover events, thereby facilitating signal amplification and enabling sensitive detection of Cu2⁺ levels down to ≈10 µm in vitro, facilitating the identification of tumor malignancy and the evaluation of therapeutic response to Cu2+ chelators. By converting metal ion activity into quantifiable MRI contrast, the MIAM nanoprobe offers a noninvasive platform for diagnosing and tracking various metal-ion-associated diseases.","PeriodicalId":228,"journal":{"name":"Small","volume":"6 1","pages":"e07307"},"PeriodicalIF":12.1000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metal-Ion-Activity Magnetic Nanoprobes for MRI Sensing of Cu2+ Levels in Tumor Malignancy.\",\"authors\":\"Yuehao Gan,Qiyue Wang,Hui Du,Yuqi Wang,Dao Shi,Longfei Pan,Daishun Ling,Fangyuan Li\",\"doi\":\"10.1002/smll.202507307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metal ions are essential for enzymatic regulation, redox balance, and signal transduction, with dysregulation increasingly implicated in cancer, neurodegeneration, and inflammation. Copper ions (Cu2+), in particular, are closely associated with tumor progression and malignancy. However, conventional binding-based magnetic resonance imaging (MRI) probes lack the sensitivity to detect trace metal ion fluctuations in vivo. Here, a metal-ion-activity magnetic (MIAM) nanoprobe is reported that integrates activity-based chemical sensing with magnetic resonance energy transfer for signal amplification. MIAM nanoprobe consists of superparamagnetic iron oxide nanoparticles (SPIONs) linked to gadoteric acid (Gd-DOTA) via a Cu2+-cleavable adipic acid dihydrazide moiety. The T1-MRI signal is initially quenched as SPIONs suppress Gd-DOTA's relaxivity. Upon exposure to elevated Cu2+, Cu2+-catalyzed reaction breaks the covalent bond in the MIAM nanoprobe and then releases free Gd-DOTA, resulting in an activated T1-MRI signal. The catalytic nature of this reaction enables multiple turnover events, thereby facilitating signal amplification and enabling sensitive detection of Cu2⁺ levels down to ≈10 µm in vitro, facilitating the identification of tumor malignancy and the evaluation of therapeutic response to Cu2+ chelators. By converting metal ion activity into quantifiable MRI contrast, the MIAM nanoprobe offers a noninvasive platform for diagnosing and tracking various metal-ion-associated diseases.\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"6 1\",\"pages\":\"e07307\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2025-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smll.202507307\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202507307","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

金属离子对酶的调节、氧化还原平衡和信号转导至关重要,其失调与癌症、神经变性和炎症的关系越来越密切。特别是铜离子(Cu2+)与肿瘤进展和恶性肿瘤密切相关。然而,传统的基于结合的磁共振成像(MRI)探针缺乏检测体内微量金属离子波动的灵敏度。本文报道了一种金属离子活性磁性(MIAM)纳米探针,该探针将基于活性的化学传感与磁共振能量转移相结合,用于信号放大。MIAM纳米探针由超顺磁性氧化铁纳米粒子(SPIONs)通过Cu2+可切割的己二酸二肼片段连接到钆酸(Gd-DOTA)。由于SPIONs抑制Gd-DOTA的弛豫,T1-MRI信号最初被淬灭。当暴露于升高的Cu2+时,Cu2+催化的反应破坏了MIAM纳米探针中的共价键,然后释放出游离的Gd-DOTA,导致激活的T1-MRI信号。该反应的催化性质使该反应能够发生多次转换事件,从而促进信号放大,并在体外对低至≈10µm的Cu2+水平进行敏感检测,从而促进肿瘤恶性的鉴定和对Cu2+螯合剂的治疗反应的评估。通过将金属离子活性转化为可量化的MRI对比,MIAM纳米探针为诊断和跟踪各种金属离子相关疾病提供了一个无创平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Metal-Ion-Activity Magnetic Nanoprobes for MRI Sensing of Cu2+ Levels in Tumor Malignancy.
Metal ions are essential for enzymatic regulation, redox balance, and signal transduction, with dysregulation increasingly implicated in cancer, neurodegeneration, and inflammation. Copper ions (Cu2+), in particular, are closely associated with tumor progression and malignancy. However, conventional binding-based magnetic resonance imaging (MRI) probes lack the sensitivity to detect trace metal ion fluctuations in vivo. Here, a metal-ion-activity magnetic (MIAM) nanoprobe is reported that integrates activity-based chemical sensing with magnetic resonance energy transfer for signal amplification. MIAM nanoprobe consists of superparamagnetic iron oxide nanoparticles (SPIONs) linked to gadoteric acid (Gd-DOTA) via a Cu2+-cleavable adipic acid dihydrazide moiety. The T1-MRI signal is initially quenched as SPIONs suppress Gd-DOTA's relaxivity. Upon exposure to elevated Cu2+, Cu2+-catalyzed reaction breaks the covalent bond in the MIAM nanoprobe and then releases free Gd-DOTA, resulting in an activated T1-MRI signal. The catalytic nature of this reaction enables multiple turnover events, thereby facilitating signal amplification and enabling sensitive detection of Cu2⁺ levels down to ≈10 µm in vitro, facilitating the identification of tumor malignancy and the evaluation of therapeutic response to Cu2+ chelators. By converting metal ion activity into quantifiable MRI contrast, the MIAM nanoprobe offers a noninvasive platform for diagnosing and tracking various metal-ion-associated diseases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信