单原子铂在MoS2纳米花上的压电催化高效析氢。

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-10-06 DOI:10.1002/smll.202508162
Yu-Ming Chen,Yu-Ching Chen,Kuang-Yuan Tu,Yi-Dong Lin,Yan-Gu Lin,Hsun-Yen Lin,Samiksha Bajaj,Jyh Ming Wu
{"title":"单原子铂在MoS2纳米花上的压电催化高效析氢。","authors":"Yu-Ming Chen,Yu-Ching Chen,Kuang-Yuan Tu,Yi-Dong Lin,Yan-Gu Lin,Hsun-Yen Lin,Samiksha Bajaj,Jyh Ming Wu","doi":"10.1002/smll.202508162","DOIUrl":null,"url":null,"abstract":"The advent of single-atom catalysts (SACs) has revolutionized catalysis, delivering outstanding performance in diverse chemical reactions. This study introduces a novel piezoelectric catalytic system employing single-atom platinum-modified MoS2 nanoflowers (NFs) for enhanced hydrogen evolution reactions (HER). High-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) identifies single-atom platinum as bright dots, while X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) analyses verify its oxidation state and radial distance. Piezoresponse force microscopy (PFM) confirms increased piezoresponse amplitude due to structural asymmetry from platinum modification. Time-resolved photoluminescence (TRPL) reveals an extended carrier lifetime of 5.7 ns, while the modified catalyst (SA-Pt-01, MoS2 NFs with 1 wt.% Pt) achieves a fourfold increase in hydrogen production efficiency, reaching 2206.15 µmol·g-1·h-1. Notably, SA-Pt-1 generates 7786.9 µmol·g-1 in 12 h, showcasing sustained performance. Electron paramagnetic resonance (EPR) detects stronger •OH radical signals, indicating increased reactive availability. Density functional theory (DFT) simulations show that single-atom Pt incorporation enhances adsorption energy and reduces energy barriers for hydrogen production. These findings underscore the potential of single-atom Pt-modified MoS2 NFs as efficient, sustainable catalysts for clean hydrogen energy applications.","PeriodicalId":228,"journal":{"name":"Small","volume":"22 1","pages":"e08162"},"PeriodicalIF":12.1000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Piezocatalysis-Enabled High-Efficiency Hydrogen Evolution with Single-Atom Platinum on MoS2 Nanoflowers.\",\"authors\":\"Yu-Ming Chen,Yu-Ching Chen,Kuang-Yuan Tu,Yi-Dong Lin,Yan-Gu Lin,Hsun-Yen Lin,Samiksha Bajaj,Jyh Ming Wu\",\"doi\":\"10.1002/smll.202508162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The advent of single-atom catalysts (SACs) has revolutionized catalysis, delivering outstanding performance in diverse chemical reactions. This study introduces a novel piezoelectric catalytic system employing single-atom platinum-modified MoS2 nanoflowers (NFs) for enhanced hydrogen evolution reactions (HER). High-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) identifies single-atom platinum as bright dots, while X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) analyses verify its oxidation state and radial distance. Piezoresponse force microscopy (PFM) confirms increased piezoresponse amplitude due to structural asymmetry from platinum modification. Time-resolved photoluminescence (TRPL) reveals an extended carrier lifetime of 5.7 ns, while the modified catalyst (SA-Pt-01, MoS2 NFs with 1 wt.% Pt) achieves a fourfold increase in hydrogen production efficiency, reaching 2206.15 µmol·g-1·h-1. Notably, SA-Pt-1 generates 7786.9 µmol·g-1 in 12 h, showcasing sustained performance. Electron paramagnetic resonance (EPR) detects stronger •OH radical signals, indicating increased reactive availability. Density functional theory (DFT) simulations show that single-atom Pt incorporation enhances adsorption energy and reduces energy barriers for hydrogen production. These findings underscore the potential of single-atom Pt-modified MoS2 NFs as efficient, sustainable catalysts for clean hydrogen energy applications.\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"22 1\",\"pages\":\"e08162\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2025-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smll.202508162\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202508162","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

单原子催化剂(SACs)的出现彻底改变了催化,在各种化学反应中提供了出色的性能。本文介绍了一种利用单原子铂修饰的MoS2纳米花(NFs)促进析氢反应(HER)的新型压电催化系统。高角度环形暗场扫描透射电子显微镜(HAADF-STEM)将单原子铂识别为亮点,x射线吸收近边缘结构(XANES)和扩展x射线吸收精细结构(EXAFS)分析验证了其氧化态和径向距离。压电响应力显微镜(PFM)证实,由于铂改性的结构不对称,导致了压电响应振幅的增加。时间分辨光致发光(TRPL)显示,载流子寿命延长了5.7 ns,而改性催化剂(SA-Pt-01, MoS2 NFs, Pt含量为1 wt.%)的产氢效率提高了4倍,达到2206.15µmol·g-1·h-1。值得注意的是,SA-Pt-1在12小时内产生7786.9µmol·g-1,表现出持续的性能。电子顺磁共振(EPR)检测到更强的•OH自由基信号,表明反应可用性增加。密度泛函理论(DFT)模拟表明,单原子铂的加入提高了吸附能,降低了产氢的能垒。这些发现强调了单原子pt修饰的MoS2 NFs作为清洁氢能源应用的高效、可持续催化剂的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Piezocatalysis-Enabled High-Efficiency Hydrogen Evolution with Single-Atom Platinum on MoS2 Nanoflowers.
The advent of single-atom catalysts (SACs) has revolutionized catalysis, delivering outstanding performance in diverse chemical reactions. This study introduces a novel piezoelectric catalytic system employing single-atom platinum-modified MoS2 nanoflowers (NFs) for enhanced hydrogen evolution reactions (HER). High-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) identifies single-atom platinum as bright dots, while X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) analyses verify its oxidation state and radial distance. Piezoresponse force microscopy (PFM) confirms increased piezoresponse amplitude due to structural asymmetry from platinum modification. Time-resolved photoluminescence (TRPL) reveals an extended carrier lifetime of 5.7 ns, while the modified catalyst (SA-Pt-01, MoS2 NFs with 1 wt.% Pt) achieves a fourfold increase in hydrogen production efficiency, reaching 2206.15 µmol·g-1·h-1. Notably, SA-Pt-1 generates 7786.9 µmol·g-1 in 12 h, showcasing sustained performance. Electron paramagnetic resonance (EPR) detects stronger •OH radical signals, indicating increased reactive availability. Density functional theory (DFT) simulations show that single-atom Pt incorporation enhances adsorption energy and reduces energy barriers for hydrogen production. These findings underscore the potential of single-atom Pt-modified MoS2 NFs as efficient, sustainable catalysts for clean hydrogen energy applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信