基于MC-GAT模型和多头注意机制的WRF仿真知识共享——以中国为例

IF 4.6 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Yazhou Qi , Chunxiao Zhang , Hanguang Yu , Aijia Wang , Xiaoyang Hao , Chen Yang , Rongrong Li
{"title":"基于MC-GAT模型和多头注意机制的WRF仿真知识共享——以中国为例","authors":"Yazhou Qi ,&nbsp;Chunxiao Zhang ,&nbsp;Hanguang Yu ,&nbsp;Aijia Wang ,&nbsp;Xiaoyang Hao ,&nbsp;Chen Yang ,&nbsp;Rongrong Li","doi":"10.1016/j.envsoft.2025.106712","DOIUrl":null,"url":null,"abstract":"<div><div>Meteorological processes are a critical component of environmental systems. The management and sharing of meteorological simulation knowledge are essential for the scientific modeling of these processes. Numerous meteorological simulation studies have provided detailed descriptions of regional configurations and parameterization schemes. However, effectively managing and sharing WRF simulation knowledge remains a significant challenge. This study proposes a knowledge prediction framework based on a Multi-Condition Graph Attention Network (MC-GAT), which employs a multi-head attention mechanism to aggregate multi-condition feature information for parameter prediction. The framework focuses on provincial regions in China, using 10 provinces as examples, each serving as the innermost nested region for WRF parameter prediction. The results indicate that as the number of input conditions increases, the model's prediction accuracy improves significantly. Furthermore, a preliminary WRF knowledge prediction platform for Chinese regions has been developed to enable users to quickly obtain WRF parameters, thereby enhancing the efficiency of parameter selection.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"195 ","pages":"Article 106712"},"PeriodicalIF":4.6000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"WRF simulation knowledge sharing based on the MC-GAT model and multi-head attention mechanism: A case study in China\",\"authors\":\"Yazhou Qi ,&nbsp;Chunxiao Zhang ,&nbsp;Hanguang Yu ,&nbsp;Aijia Wang ,&nbsp;Xiaoyang Hao ,&nbsp;Chen Yang ,&nbsp;Rongrong Li\",\"doi\":\"10.1016/j.envsoft.2025.106712\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Meteorological processes are a critical component of environmental systems. The management and sharing of meteorological simulation knowledge are essential for the scientific modeling of these processes. Numerous meteorological simulation studies have provided detailed descriptions of regional configurations and parameterization schemes. However, effectively managing and sharing WRF simulation knowledge remains a significant challenge. This study proposes a knowledge prediction framework based on a Multi-Condition Graph Attention Network (MC-GAT), which employs a multi-head attention mechanism to aggregate multi-condition feature information for parameter prediction. The framework focuses on provincial regions in China, using 10 provinces as examples, each serving as the innermost nested region for WRF parameter prediction. The results indicate that as the number of input conditions increases, the model's prediction accuracy improves significantly. Furthermore, a preliminary WRF knowledge prediction platform for Chinese regions has been developed to enable users to quickly obtain WRF parameters, thereby enhancing the efficiency of parameter selection.</div></div>\",\"PeriodicalId\":310,\"journal\":{\"name\":\"Environmental Modelling & Software\",\"volume\":\"195 \",\"pages\":\"Article 106712\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Modelling & Software\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364815225003962\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815225003962","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

气象过程是环境系统的一个重要组成部分。气象模拟知识的管理和共享对于这些过程的科学建模至关重要。许多气象模拟研究提供了区域配置和参数化方案的详细描述。然而,有效地管理和共享WRF模拟知识仍然是一个重大挑战。本研究提出了一种基于多条件图注意网络(MC-GAT)的知识预测框架,该框架采用多头注意机制聚合多条件特征信息进行参数预测。该框架以中国省区为重点,以10个省为例,每个省作为WRF参数预测的最内层嵌套区域。结果表明,随着输入条件数量的增加,模型的预测精度显著提高。此外,开发了初步的中国区域WRF知识预测平台,使用户能够快速获取WRF参数,从而提高参数选择效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
WRF simulation knowledge sharing based on the MC-GAT model and multi-head attention mechanism: A case study in China
Meteorological processes are a critical component of environmental systems. The management and sharing of meteorological simulation knowledge are essential for the scientific modeling of these processes. Numerous meteorological simulation studies have provided detailed descriptions of regional configurations and parameterization schemes. However, effectively managing and sharing WRF simulation knowledge remains a significant challenge. This study proposes a knowledge prediction framework based on a Multi-Condition Graph Attention Network (MC-GAT), which employs a multi-head attention mechanism to aggregate multi-condition feature information for parameter prediction. The framework focuses on provincial regions in China, using 10 provinces as examples, each serving as the innermost nested region for WRF parameter prediction. The results indicate that as the number of input conditions increases, the model's prediction accuracy improves significantly. Furthermore, a preliminary WRF knowledge prediction platform for Chinese regions has been developed to enable users to quickly obtain WRF parameters, thereby enhancing the efficiency of parameter selection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Modelling & Software
Environmental Modelling & Software 工程技术-工程:环境
CiteScore
9.30
自引率
8.20%
发文量
241
审稿时长
60 days
期刊介绍: Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信