自底向上合成具有优异抗水解性和导热性的二维AlN纳米片。

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-10-06 DOI:10.1002/smll.202507445
Wonyeong Lee,Gyuchan Kim,Byung-Hyun Kim,Haekyun Park,Sung-Joon Park,Chang-Min Yoon,Myeongjin Kim
{"title":"自底向上合成具有优异抗水解性和导热性的二维AlN纳米片。","authors":"Wonyeong Lee,Gyuchan Kim,Byung-Hyun Kim,Haekyun Park,Sung-Joon Park,Chang-Min Yoon,Myeongjin Kim","doi":"10.1002/smll.202507445","DOIUrl":null,"url":null,"abstract":"Advanced electronics require efficient thermal management materials, yet aluminum nitride (AlN) faces critical limitations despite its outstanding thermal conductivity (320 W m-1 K-1). Conventional spherical AlN suffers from moisture-induced degradation producing hazardous ammonia gas and requires excessive loading fractions for thermal network formation. Herein, an innovative synthesis strategy producing 2D AlN nanosheets is developed through graphene oxide-templated chemical deposition followed by carbothermal nitridation. The synthesized 2D AlN features ultrathin architecture (1-2 nm thickness) with remarkable aspect ratios approaching 50. Epoxy composites containing 2D AlN achieve superior thermal performance (5.35 W m-1 K-1 at 60 vol.%) compared to spherical AlN systems (3.80 W m-1 K-1), attributed to enhanced percolation behavior at lower concentrations. Density functional theory calculations reveal quantum size effects elevate nitrogen 2p electronic states, increasing kinetic barriers against hydrolytic attack mechanisms. Under accelerated aging conditions (85 °C, 85% humidity), 2D AlN composites maintain thermal properties with negligible degradation over 200 h. This morphological engineering approach unlocks new possibilities for robust thermal interface applications in demanding electronic environments.","PeriodicalId":228,"journal":{"name":"Small","volume":"18 1","pages":"e07445"},"PeriodicalIF":12.1000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bottom-Up Synthesis of 2D AlN Nanosheets with Superior Hydrolytic Resistance and Thermal Conductivity.\",\"authors\":\"Wonyeong Lee,Gyuchan Kim,Byung-Hyun Kim,Haekyun Park,Sung-Joon Park,Chang-Min Yoon,Myeongjin Kim\",\"doi\":\"10.1002/smll.202507445\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Advanced electronics require efficient thermal management materials, yet aluminum nitride (AlN) faces critical limitations despite its outstanding thermal conductivity (320 W m-1 K-1). Conventional spherical AlN suffers from moisture-induced degradation producing hazardous ammonia gas and requires excessive loading fractions for thermal network formation. Herein, an innovative synthesis strategy producing 2D AlN nanosheets is developed through graphene oxide-templated chemical deposition followed by carbothermal nitridation. The synthesized 2D AlN features ultrathin architecture (1-2 nm thickness) with remarkable aspect ratios approaching 50. Epoxy composites containing 2D AlN achieve superior thermal performance (5.35 W m-1 K-1 at 60 vol.%) compared to spherical AlN systems (3.80 W m-1 K-1), attributed to enhanced percolation behavior at lower concentrations. Density functional theory calculations reveal quantum size effects elevate nitrogen 2p electronic states, increasing kinetic barriers against hydrolytic attack mechanisms. Under accelerated aging conditions (85 °C, 85% humidity), 2D AlN composites maintain thermal properties with negligible degradation over 200 h. This morphological engineering approach unlocks new possibilities for robust thermal interface applications in demanding electronic environments.\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"18 1\",\"pages\":\"e07445\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2025-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smll.202507445\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202507445","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

先进的电子产品需要高效的热管理材料,然而氮化铝(AlN)面临着严峻的限制,尽管其出色的导热性(320 W m-1 K-1)。传统的球形氮化铝容易受潮导致降解,产生有害的氨气,并且需要过多的负荷分数来形成热网。本文通过氧化石墨烯模板化学沉积,然后碳热氮化,开发了一种创新的合成策略,生产二维AlN纳米片。合成的二维AlN具有超薄结构(厚度为1 ~ 2 nm),宽高比接近50。与球形AlN体系(3.80 W m-1 K-1)相比,含有2D AlN的环氧复合材料具有更优越的热性能(在60 vol.%时为5.35 W m-1 K-1),这归因于较低浓度下增强的渗透行为。密度泛函理论计算表明,量子尺寸效应提高了氮的2p电子态,增加了对抗水解攻击机制的动力学屏障。在加速老化条件下(85°C, 85%湿度),2D AlN复合材料在200小时内保持热性能,降解可以忽略不计。这种形态工程方法为苛刻的电子环境中强大的热界面应用提供了新的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bottom-Up Synthesis of 2D AlN Nanosheets with Superior Hydrolytic Resistance and Thermal Conductivity.
Advanced electronics require efficient thermal management materials, yet aluminum nitride (AlN) faces critical limitations despite its outstanding thermal conductivity (320 W m-1 K-1). Conventional spherical AlN suffers from moisture-induced degradation producing hazardous ammonia gas and requires excessive loading fractions for thermal network formation. Herein, an innovative synthesis strategy producing 2D AlN nanosheets is developed through graphene oxide-templated chemical deposition followed by carbothermal nitridation. The synthesized 2D AlN features ultrathin architecture (1-2 nm thickness) with remarkable aspect ratios approaching 50. Epoxy composites containing 2D AlN achieve superior thermal performance (5.35 W m-1 K-1 at 60 vol.%) compared to spherical AlN systems (3.80 W m-1 K-1), attributed to enhanced percolation behavior at lower concentrations. Density functional theory calculations reveal quantum size effects elevate nitrogen 2p electronic states, increasing kinetic barriers against hydrolytic attack mechanisms. Under accelerated aging conditions (85 °C, 85% humidity), 2D AlN composites maintain thermal properties with negligible degradation over 200 h. This morphological engineering approach unlocks new possibilities for robust thermal interface applications in demanding electronic environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信