{"title":"氮化硼中氟介导的碳掺杂:平衡微波吸收和热管理的原子级界面工程。","authors":"Zhangwen Xie,Yufei Tang,Yagang Zhang,Wanxing Zheng,Yani Sun,Huan Zhong,Shiyu Zhang,Qingnan Meng,Kang Zhao","doi":"10.1002/smll.202506851","DOIUrl":null,"url":null,"abstract":"The advancement of high-density integrated electronics urgently demands materials that integrate efficient thermal management and microwave absorption. However, conventional design strategies that often rely on materials with multi-component composites face a trade-off between these properties, and a lack of microwave absorption effectiveness study in the polymer matrix. Herein, a fluorine-mediated carbon doping in boron nitride (C-F-BN) is designed to achieve atomic-level interface engineering. Fluoride induces the formation of polarized C─F bonds and promotes ordered sp2-carbon incorporation, which well preserves the BN lattice integrity while establishing strong polarization sites. The resulting C-F-BN shows exceptional microwave absorption with a reflection loss of -43 dB at 2 mm thickness, compared to that of only carbon doping in BN, achieving an effective absorption bandwidth of 3.52 GHz and a remarkable absorption efficiency index of 35 dB· GHz mm-1. The maintained BN crystallinity, ordered sp2-carbon conversion, and enhanced interfacial compatibility between C-F-BN and polyvinyl alcohol (PVA) enable PVA/C-F-BN composites to attain higher through-plane thermal conductivity (0.2599 W·m-1·K-1) at a lower filler loading (5 wt.%). Moreover, the composite exhibits a broader absorption bandwidth of 3.84 GHz with a reflection loss of -32 dB. The design concept offers a feasible route to multifunctional materials for advanced electronic packaging.","PeriodicalId":228,"journal":{"name":"Small","volume":"31 1","pages":"e06851"},"PeriodicalIF":12.1000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fluorine-Mediated Carbon Doping in Boron Nitride: Atomic-Level Interface Engineering for Balancing Microwave Absorption and Thermal Management.\",\"authors\":\"Zhangwen Xie,Yufei Tang,Yagang Zhang,Wanxing Zheng,Yani Sun,Huan Zhong,Shiyu Zhang,Qingnan Meng,Kang Zhao\",\"doi\":\"10.1002/smll.202506851\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The advancement of high-density integrated electronics urgently demands materials that integrate efficient thermal management and microwave absorption. However, conventional design strategies that often rely on materials with multi-component composites face a trade-off between these properties, and a lack of microwave absorption effectiveness study in the polymer matrix. Herein, a fluorine-mediated carbon doping in boron nitride (C-F-BN) is designed to achieve atomic-level interface engineering. Fluoride induces the formation of polarized C─F bonds and promotes ordered sp2-carbon incorporation, which well preserves the BN lattice integrity while establishing strong polarization sites. The resulting C-F-BN shows exceptional microwave absorption with a reflection loss of -43 dB at 2 mm thickness, compared to that of only carbon doping in BN, achieving an effective absorption bandwidth of 3.52 GHz and a remarkable absorption efficiency index of 35 dB· GHz mm-1. The maintained BN crystallinity, ordered sp2-carbon conversion, and enhanced interfacial compatibility between C-F-BN and polyvinyl alcohol (PVA) enable PVA/C-F-BN composites to attain higher through-plane thermal conductivity (0.2599 W·m-1·K-1) at a lower filler loading (5 wt.%). Moreover, the composite exhibits a broader absorption bandwidth of 3.84 GHz with a reflection loss of -32 dB. The design concept offers a feasible route to multifunctional materials for advanced electronic packaging.\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"31 1\",\"pages\":\"e06851\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2025-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smll.202506851\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202506851","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Fluorine-Mediated Carbon Doping in Boron Nitride: Atomic-Level Interface Engineering for Balancing Microwave Absorption and Thermal Management.
The advancement of high-density integrated electronics urgently demands materials that integrate efficient thermal management and microwave absorption. However, conventional design strategies that often rely on materials with multi-component composites face a trade-off between these properties, and a lack of microwave absorption effectiveness study in the polymer matrix. Herein, a fluorine-mediated carbon doping in boron nitride (C-F-BN) is designed to achieve atomic-level interface engineering. Fluoride induces the formation of polarized C─F bonds and promotes ordered sp2-carbon incorporation, which well preserves the BN lattice integrity while establishing strong polarization sites. The resulting C-F-BN shows exceptional microwave absorption with a reflection loss of -43 dB at 2 mm thickness, compared to that of only carbon doping in BN, achieving an effective absorption bandwidth of 3.52 GHz and a remarkable absorption efficiency index of 35 dB· GHz mm-1. The maintained BN crystallinity, ordered sp2-carbon conversion, and enhanced interfacial compatibility between C-F-BN and polyvinyl alcohol (PVA) enable PVA/C-F-BN composites to attain higher through-plane thermal conductivity (0.2599 W·m-1·K-1) at a lower filler loading (5 wt.%). Moreover, the composite exhibits a broader absorption bandwidth of 3.84 GHz with a reflection loss of -32 dB. The design concept offers a feasible route to multifunctional materials for advanced electronic packaging.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.