通过选择性去除表面锶来激活固体氧化物燃料电池的阴极

IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Peiyao Feng, Haoqing Lin, Guangxing Huang, Qirui Ye, Feifei Dong, Shasha Luo, Wei Wang, Yu Chen, Bote Zhao
{"title":"通过选择性去除表面锶来激活固体氧化物燃料电池的阴极","authors":"Peiyao Feng, Haoqing Lin, Guangxing Huang, Qirui Ye, Feifei Dong, Shasha Luo, Wei Wang, Yu Chen, Bote Zhao","doi":"10.1039/d5ta05022g","DOIUrl":null,"url":null,"abstract":"Sr segregation in perovskite cathodes depletes active sites for the oxygen reduction reaction (ORR) and accelerates performance degradation in solid oxide fuel cells (SOFCs). La<small><sub>0.6</sub></small>Sr<small><sub>0.4</sub></small>Co<small><sub>0.2</sub></small>Fe<small><sub>0.8</sub></small>O<small><sub>3−δ</sub></small> (LSCF), a representative cathode material for intermediate-temperature SOFCs, suffers from surface Sr segregation, leading to electrochemical deterioration. Here, we present a surface engineering strategy based on alkaline treatment to selectively remove Sr-rich surface species while preserving the bulk perovskite structure. Structural and electrochemical analyses using LSCF as a model cathode reveal that this treatment exposes catalytically active B-site (Co/Fe) cations and eliminates Sr-derived surface species, thereby optimizing ORR kinetics. The treated LSCF cathode exhibits a 27–40% reduction in area-specific resistance (ASR<small><sub>p</sub></small>) over the temperature range of 700–550 °C and maintains stable performance during 150 h of operation. A single fuel cell with the modified cathode achieves a peak power density of 1.07 W cm<small><sup>−2</sup></small> at 650 °C, a 23% improvement over pristine LSCF. This approach is applicable to the commercial LSCF cathode and offers a promising route for developing high-performance cathode materials for intermediate-temperature SOFCs.","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":"20 1","pages":""},"PeriodicalIF":9.5000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Activating the cathode for solid oxide fuel cells by selective removal of surface strontium\",\"authors\":\"Peiyao Feng, Haoqing Lin, Guangxing Huang, Qirui Ye, Feifei Dong, Shasha Luo, Wei Wang, Yu Chen, Bote Zhao\",\"doi\":\"10.1039/d5ta05022g\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sr segregation in perovskite cathodes depletes active sites for the oxygen reduction reaction (ORR) and accelerates performance degradation in solid oxide fuel cells (SOFCs). La<small><sub>0.6</sub></small>Sr<small><sub>0.4</sub></small>Co<small><sub>0.2</sub></small>Fe<small><sub>0.8</sub></small>O<small><sub>3−δ</sub></small> (LSCF), a representative cathode material for intermediate-temperature SOFCs, suffers from surface Sr segregation, leading to electrochemical deterioration. Here, we present a surface engineering strategy based on alkaline treatment to selectively remove Sr-rich surface species while preserving the bulk perovskite structure. Structural and electrochemical analyses using LSCF as a model cathode reveal that this treatment exposes catalytically active B-site (Co/Fe) cations and eliminates Sr-derived surface species, thereby optimizing ORR kinetics. The treated LSCF cathode exhibits a 27–40% reduction in area-specific resistance (ASR<small><sub>p</sub></small>) over the temperature range of 700–550 °C and maintains stable performance during 150 h of operation. A single fuel cell with the modified cathode achieves a peak power density of 1.07 W cm<small><sup>−2</sup></small> at 650 °C, a 23% improvement over pristine LSCF. This approach is applicable to the commercial LSCF cathode and offers a promising route for developing high-performance cathode materials for intermediate-temperature SOFCs.\",\"PeriodicalId\":82,\"journal\":{\"name\":\"Journal of Materials Chemistry A\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2025-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry A\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d5ta05022g\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5ta05022g","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

钙钛矿阴极中的锶偏析耗尽了氧还原反应(ORR)的活性位点,加速了固体氧化物燃料电池(sofc)的性能下降。La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF)是中温sofc的代表性正极材料,其表面Sr偏析导致电化学劣化。在这里,我们提出了一种基于碱性处理的表面工程策略,以选择性地去除富sr表面物质,同时保留大块钙钛矿结构。使用LSCF作为模型阴极的结构和电化学分析表明,这种处理暴露了催化活性b位(Co/Fe)阳离子,消除了sr衍生的表面物质,从而优化了ORR动力学。在700-550°C的温度范围内,处理后的LSCF阴极的面积比电阻(ASRp)降低了27-40%,并在150小时的工作时间内保持稳定的性能。在650°C时,使用改性阴极的单个燃料电池的峰值功率密度为1.07 W cm - 2,比原始LSCF提高了23%。该方法适用于商用LSCF阴极,为中温sofc高性能阴极材料的开发提供了一条有前景的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Activating the cathode for solid oxide fuel cells by selective removal of surface strontium

Activating the cathode for solid oxide fuel cells by selective removal of surface strontium
Sr segregation in perovskite cathodes depletes active sites for the oxygen reduction reaction (ORR) and accelerates performance degradation in solid oxide fuel cells (SOFCs). La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF), a representative cathode material for intermediate-temperature SOFCs, suffers from surface Sr segregation, leading to electrochemical deterioration. Here, we present a surface engineering strategy based on alkaline treatment to selectively remove Sr-rich surface species while preserving the bulk perovskite structure. Structural and electrochemical analyses using LSCF as a model cathode reveal that this treatment exposes catalytically active B-site (Co/Fe) cations and eliminates Sr-derived surface species, thereby optimizing ORR kinetics. The treated LSCF cathode exhibits a 27–40% reduction in area-specific resistance (ASRp) over the temperature range of 700–550 °C and maintains stable performance during 150 h of operation. A single fuel cell with the modified cathode achieves a peak power density of 1.07 W cm−2 at 650 °C, a 23% improvement over pristine LSCF. This approach is applicable to the commercial LSCF cathode and offers a promising route for developing high-performance cathode materials for intermediate-temperature SOFCs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信