Bhavna Sharma, Krishanu Dey, Mohammad Adil Afroz, Henry J. Snaith, Soumitra Satapathi
{"title":"功能添加剂的加入提高了半透明钙钛矿太阳能电池的性能","authors":"Bhavna Sharma, Krishanu Dey, Mohammad Adil Afroz, Henry J. Snaith, Soumitra Satapathi","doi":"10.1021/acsenergylett.5c02494","DOIUrl":null,"url":null,"abstract":"Semi-transparent perovskite solar cells (ST-PSCs) have shown great potential in building-integrated photovoltaics. However, the performance of ST-PSCs is still far from achieving their true potential. Herein, a functional additive, [4-(trifluoromethyl)phenyl] sulfonyl chloride (TFBSC), is incorporated into the perovskite precursor solution to regulate the crystallization process and reduce defects in the perovskite films. The addition of TFBSC improves the perovskite film morphology and increases the charge carrier lifetime and photoluminescence quantum efficiency, compared with the control perovskite films. As a result, the champion device modified with TFBSC shows a power conversion efficiency (PCE) of 14.75% with a light utilization efficiency (LUE) of 3.92%, whereas the control device shows PCE and LUE values of 10.71% and 2.96%, respectively. Moreover, the unencapsulated TFBSC-modified device retains ∼90% of its initial PCE after 1500 h of storage under ambient conditions (relative humidity of ∼30%–40%). These findings could provide new avenues to develop high performance ST-PSCs for smart building applications.","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"348 1","pages":""},"PeriodicalIF":18.2000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Functional Additive Incorporation Enhances the Performance of Semi-Transparent Perovskite Solar Cells\",\"authors\":\"Bhavna Sharma, Krishanu Dey, Mohammad Adil Afroz, Henry J. Snaith, Soumitra Satapathi\",\"doi\":\"10.1021/acsenergylett.5c02494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Semi-transparent perovskite solar cells (ST-PSCs) have shown great potential in building-integrated photovoltaics. However, the performance of ST-PSCs is still far from achieving their true potential. Herein, a functional additive, [4-(trifluoromethyl)phenyl] sulfonyl chloride (TFBSC), is incorporated into the perovskite precursor solution to regulate the crystallization process and reduce defects in the perovskite films. The addition of TFBSC improves the perovskite film morphology and increases the charge carrier lifetime and photoluminescence quantum efficiency, compared with the control perovskite films. As a result, the champion device modified with TFBSC shows a power conversion efficiency (PCE) of 14.75% with a light utilization efficiency (LUE) of 3.92%, whereas the control device shows PCE and LUE values of 10.71% and 2.96%, respectively. Moreover, the unencapsulated TFBSC-modified device retains ∼90% of its initial PCE after 1500 h of storage under ambient conditions (relative humidity of ∼30%–40%). These findings could provide new avenues to develop high performance ST-PSCs for smart building applications.\",\"PeriodicalId\":16,\"journal\":{\"name\":\"ACS Energy Letters \",\"volume\":\"348 1\",\"pages\":\"\"},\"PeriodicalIF\":18.2000,\"publicationDate\":\"2025-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Energy Letters \",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsenergylett.5c02494\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsenergylett.5c02494","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Functional Additive Incorporation Enhances the Performance of Semi-Transparent Perovskite Solar Cells
Semi-transparent perovskite solar cells (ST-PSCs) have shown great potential in building-integrated photovoltaics. However, the performance of ST-PSCs is still far from achieving their true potential. Herein, a functional additive, [4-(trifluoromethyl)phenyl] sulfonyl chloride (TFBSC), is incorporated into the perovskite precursor solution to regulate the crystallization process and reduce defects in the perovskite films. The addition of TFBSC improves the perovskite film morphology and increases the charge carrier lifetime and photoluminescence quantum efficiency, compared with the control perovskite films. As a result, the champion device modified with TFBSC shows a power conversion efficiency (PCE) of 14.75% with a light utilization efficiency (LUE) of 3.92%, whereas the control device shows PCE and LUE values of 10.71% and 2.96%, respectively. Moreover, the unencapsulated TFBSC-modified device retains ∼90% of its initial PCE after 1500 h of storage under ambient conditions (relative humidity of ∼30%–40%). These findings could provide new avenues to develop high performance ST-PSCs for smart building applications.
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍:
ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format.
ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology.
The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.