通过硼工程揭示半导体/电催化剂/电解质双界面的快速电荷转移动力学,以实现高效的水分解

IF 26 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Wei Zhao, Ze Wang, Hui Huang, Yaorong He, Shaoyu Zou, Lin Zhu, Hui Xiao, Xingming Ning, Wei Luo, Peiyao Du, Xiaoquan Lu
{"title":"通过硼工程揭示半导体/电催化剂/电解质双界面的快速电荷转移动力学,以实现高效的水分解","authors":"Wei Zhao, Ze Wang, Hui Huang, Yaorong He, Shaoyu Zou, Lin Zhu, Hui Xiao, Xingming Ning, Wei Luo, Peiyao Du, Xiaoquan Lu","doi":"10.1002/aenm.202504275","DOIUrl":null,"url":null,"abstract":"Promoting the generation of highly active species at semiconductor/electrocatalyst/electrolyte interfaces can enhance photoelectrochemical (PEC) water splitting performance, yet achieving this goal remains challenging with current strategies. Herein, a feasible boron (B) engineering strategy is proposed to simultaneously modulate interface charge transfer and surface catalytic reaction dynamics by incorporating electron‐deficient B into a state‐of‐the‐art semiconductor/electrocatalyst system (BiVO<jats:sub>4</jats:sub>/FeNiOOH). Scanning photoelectrochemical microscopy and X‐ray photoelectron spectroscopy reveal that the introduction of B into FeNiOOH facilitates internal charge transfer (electrons migrate along the direction of Ni→B→Fe) via a charge relay effect, and generates more active species (Fe<jats:sup>3‐δ</jats:sup> and Ni<jats:sup>3+δ</jats:sup>) at the BiVO<jats:sub>4</jats:sub>/FeNiOOH‐B/electrolyte interface, thereby accelerating both charge transfer and surface reaction dynamics. As anticipated, the BiVO<jats:sub>4</jats:sub>/FeNiOOH‐B photoanode achieves a remarkable photocurrent density of 6.58 mA cm<jats:sup>−2</jats:sup> at 1.23 V<jats:sub>RHE</jats:sub>, along with excellent photostability. Furthermore, this B‐engineering effect can be applied to develop alternative TiO<jats:sub>2</jats:sub>/FeNiOOH‐B configurations to further enhance PEC activity. This work opens new possibilities for B engineering in semiconductor/electrocatalyst systems, enabling highly efficient and stable water‐splitting applications.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"105 1","pages":""},"PeriodicalIF":26.0000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling Fast Charge Transfer Dynamics at Semiconductor/Electrocatalyst/Electrolyte Dual Interfaces via Boron Engineering for Efficient Water Splitting\",\"authors\":\"Wei Zhao, Ze Wang, Hui Huang, Yaorong He, Shaoyu Zou, Lin Zhu, Hui Xiao, Xingming Ning, Wei Luo, Peiyao Du, Xiaoquan Lu\",\"doi\":\"10.1002/aenm.202504275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Promoting the generation of highly active species at semiconductor/electrocatalyst/electrolyte interfaces can enhance photoelectrochemical (PEC) water splitting performance, yet achieving this goal remains challenging with current strategies. Herein, a feasible boron (B) engineering strategy is proposed to simultaneously modulate interface charge transfer and surface catalytic reaction dynamics by incorporating electron‐deficient B into a state‐of‐the‐art semiconductor/electrocatalyst system (BiVO<jats:sub>4</jats:sub>/FeNiOOH). Scanning photoelectrochemical microscopy and X‐ray photoelectron spectroscopy reveal that the introduction of B into FeNiOOH facilitates internal charge transfer (electrons migrate along the direction of Ni→B→Fe) via a charge relay effect, and generates more active species (Fe<jats:sup>3‐δ</jats:sup> and Ni<jats:sup>3+δ</jats:sup>) at the BiVO<jats:sub>4</jats:sub>/FeNiOOH‐B/electrolyte interface, thereby accelerating both charge transfer and surface reaction dynamics. As anticipated, the BiVO<jats:sub>4</jats:sub>/FeNiOOH‐B photoanode achieves a remarkable photocurrent density of 6.58 mA cm<jats:sup>−2</jats:sup> at 1.23 V<jats:sub>RHE</jats:sub>, along with excellent photostability. Furthermore, this B‐engineering effect can be applied to develop alternative TiO<jats:sub>2</jats:sub>/FeNiOOH‐B configurations to further enhance PEC activity. This work opens new possibilities for B engineering in semiconductor/electrocatalyst systems, enabling highly efficient and stable water‐splitting applications.\",\"PeriodicalId\":111,\"journal\":{\"name\":\"Advanced Energy Materials\",\"volume\":\"105 1\",\"pages\":\"\"},\"PeriodicalIF\":26.0000,\"publicationDate\":\"2025-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/aenm.202504275\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202504275","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

促进半导体/电催化剂/电解质界面上高活性物质的产生可以提高光电化学(PEC)的水分解性能,但实现这一目标仍然是当前策略的挑战。本文提出了一种可行的硼(B)工程策略,通过将缺电子的硼加入到最先进的半导体/电催化剂体系(BiVO4/FeNiOOH)中,同时调节界面电荷转移和表面催化反应动力学。扫描光化学显微镜和X射线光电子能谱显示,B的引入通过电荷继电效应促进了内部电荷转移(电子沿Ni→B→Fe方向迁移),并在BiVO4/FeNiOOH‐B/电解质界面产生了更多的活性物质(Fe3‐δ和Ni3+δ),从而加速了电荷转移和表面反应动力学。正如预期的那样,BiVO4/FeNiOOH‐B光阳极在1.23 VRHE下实现了6.58 mA cm−2的光电流密度,并且具有出色的光稳定性。此外,这种B工程效应可以应用于开发替代TiO2/FeNiOOH‐B结构,以进一步提高PEC活性。这项工作为半导体/电催化剂系统中的B工程开辟了新的可能性,实现了高效和稳定的水分解应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unveiling Fast Charge Transfer Dynamics at Semiconductor/Electrocatalyst/Electrolyte Dual Interfaces via Boron Engineering for Efficient Water Splitting
Promoting the generation of highly active species at semiconductor/electrocatalyst/electrolyte interfaces can enhance photoelectrochemical (PEC) water splitting performance, yet achieving this goal remains challenging with current strategies. Herein, a feasible boron (B) engineering strategy is proposed to simultaneously modulate interface charge transfer and surface catalytic reaction dynamics by incorporating electron‐deficient B into a state‐of‐the‐art semiconductor/electrocatalyst system (BiVO4/FeNiOOH). Scanning photoelectrochemical microscopy and X‐ray photoelectron spectroscopy reveal that the introduction of B into FeNiOOH facilitates internal charge transfer (electrons migrate along the direction of Ni→B→Fe) via a charge relay effect, and generates more active species (Fe3‐δ and Ni3+δ) at the BiVO4/FeNiOOH‐B/electrolyte interface, thereby accelerating both charge transfer and surface reaction dynamics. As anticipated, the BiVO4/FeNiOOH‐B photoanode achieves a remarkable photocurrent density of 6.58 mA cm−2 at 1.23 VRHE, along with excellent photostability. Furthermore, this B‐engineering effect can be applied to develop alternative TiO2/FeNiOOH‐B configurations to further enhance PEC activity. This work opens new possibilities for B engineering in semiconductor/electrocatalyst systems, enabling highly efficient and stable water‐splitting applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信