固态电池用聚合物/陶瓷复合电解质中离子界面输运的量化与优化

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Longfei Cui, Shu Zhang, Jiangwei Ju, Shuo Liu, Hao Wang, Jiahao Xu, Wenjun Zhang, Pengzhou Mu, Yanyun Zhang, Lihao Liu, Peiwen Xu, Pengxian Han, Zhaolin Lv, Guanglei Cui
{"title":"固态电池用聚合物/陶瓷复合电解质中离子界面输运的量化与优化","authors":"Longfei Cui, Shu Zhang, Jiangwei Ju, Shuo Liu, Hao Wang, Jiahao Xu, Wenjun Zhang, Pengzhou Mu, Yanyun Zhang, Lihao Liu, Peiwen Xu, Pengxian Han, Zhaolin Lv, Guanglei Cui","doi":"10.1002/anie.202517153","DOIUrl":null,"url":null,"abstract":"Solid polymer/ceramic composite electrolytes have emerged as promising candidates for solid‐state batteries owing to their superior mechano‐chemical compatibility, oxidation stability, and high ionic conductivity. While extensive studies confirm that the newly formed interphase critically enhances ionic conductivity, its quantitative contribution remains experimentally unverified for any composite electrolyte. This knowledge gap lacks a key guideline for designing commercially viable solid electrolytes thereby hinders the development of solid‐state batteries. A key challenge arises from the conventional low‐dimensional fillers used in the composite electrolytes that tend to aggregate to create non‐uniform interphase distribution thus complicating the determination of critical carrier transport parameters. To address this, we fabricate three‐dimensional Li<jats:sub>6.4</jats:sub>Al<jats:sub>0.1</jats:sub>La<jats:sub>3</jats:sub>Zr<jats:sub>1.7</jats:sub>Ta<jats:sub>0.3</jats:sub>O<jats:sub>12</jats:sub> self‐supported porous skeletons as fillers, in which 1,3‐dioxolane is in situ polymerized to establish a composite model system. Using advanced characterization techniques, we determine the geometric parameters governing carrier transport and develop a corresponding model to estimate interphase conductivity. Remarkably, the interphase exhibits a room‐temperature conductivity of 2.5 mS cm<jats:sup>−1</jats:sup>, 33‐fold higher than that of the bulk composite electrolyte. We attribute this enhancement to Lewis acid–base interactions that increase initiator concentration at the interphase, producing short‐chain interfacial poly(1,3‐dioxolane) with enlarged free volume for rapid Li‐ion conduction. By applying this mechanistic understanding and coating the Li<jats:sub>6.4</jats:sub>Al<jats:sub>0.1</jats:sub>La<jats:sub>3</jats:sub>Zr<jats:sub>1.7</jats:sub>Ta<jats:sub>0.3</jats:sub>O<jats:sub>12</jats:sub> skeleton with a stronger Lewis base (Li<jats:sub>6</jats:sub>PS<jats:sub>5</jats:sub>Cl), we further optimize interphase conductivity to 12 mS cm<jats:sup>−1</jats:sup>. The applicability of the composite electrolytes is demonstrated in high‐energy solid‐state batteries with both sulfur and LiNi<jats:sub>0.8</jats:sub>Co<jats:sub>0.1</jats:sub>Mn<jats:sub>0.1</jats:sub>O<jats:sub>2</jats:sub> cathodes paired with lithium metal anodes. This work establishes fundamental design principles for engineering high‐conductivity interphases in polymer/ceramic composite electrolytes.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"32 1","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantification and Optimization of Interfacial Ion Transport in Polymer/Ceramic Composite Electrolytes for Solid‐State Batteries\",\"authors\":\"Longfei Cui, Shu Zhang, Jiangwei Ju, Shuo Liu, Hao Wang, Jiahao Xu, Wenjun Zhang, Pengzhou Mu, Yanyun Zhang, Lihao Liu, Peiwen Xu, Pengxian Han, Zhaolin Lv, Guanglei Cui\",\"doi\":\"10.1002/anie.202517153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solid polymer/ceramic composite electrolytes have emerged as promising candidates for solid‐state batteries owing to their superior mechano‐chemical compatibility, oxidation stability, and high ionic conductivity. While extensive studies confirm that the newly formed interphase critically enhances ionic conductivity, its quantitative contribution remains experimentally unverified for any composite electrolyte. This knowledge gap lacks a key guideline for designing commercially viable solid electrolytes thereby hinders the development of solid‐state batteries. A key challenge arises from the conventional low‐dimensional fillers used in the composite electrolytes that tend to aggregate to create non‐uniform interphase distribution thus complicating the determination of critical carrier transport parameters. To address this, we fabricate three‐dimensional Li<jats:sub>6.4</jats:sub>Al<jats:sub>0.1</jats:sub>La<jats:sub>3</jats:sub>Zr<jats:sub>1.7</jats:sub>Ta<jats:sub>0.3</jats:sub>O<jats:sub>12</jats:sub> self‐supported porous skeletons as fillers, in which 1,3‐dioxolane is in situ polymerized to establish a composite model system. Using advanced characterization techniques, we determine the geometric parameters governing carrier transport and develop a corresponding model to estimate interphase conductivity. Remarkably, the interphase exhibits a room‐temperature conductivity of 2.5 mS cm<jats:sup>−1</jats:sup>, 33‐fold higher than that of the bulk composite electrolyte. We attribute this enhancement to Lewis acid–base interactions that increase initiator concentration at the interphase, producing short‐chain interfacial poly(1,3‐dioxolane) with enlarged free volume for rapid Li‐ion conduction. By applying this mechanistic understanding and coating the Li<jats:sub>6.4</jats:sub>Al<jats:sub>0.1</jats:sub>La<jats:sub>3</jats:sub>Zr<jats:sub>1.7</jats:sub>Ta<jats:sub>0.3</jats:sub>O<jats:sub>12</jats:sub> skeleton with a stronger Lewis base (Li<jats:sub>6</jats:sub>PS<jats:sub>5</jats:sub>Cl), we further optimize interphase conductivity to 12 mS cm<jats:sup>−1</jats:sup>. The applicability of the composite electrolytes is demonstrated in high‐energy solid‐state batteries with both sulfur and LiNi<jats:sub>0.8</jats:sub>Co<jats:sub>0.1</jats:sub>Mn<jats:sub>0.1</jats:sub>O<jats:sub>2</jats:sub> cathodes paired with lithium metal anodes. This work establishes fundamental design principles for engineering high‐conductivity interphases in polymer/ceramic composite electrolytes.\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":16.9000,\"publicationDate\":\"2025-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202517153\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202517153","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

固体聚合物/陶瓷复合电解质由于其优异的机械化学相容性、氧化稳定性和高离子电导率而成为固态电池的有前途的候选者。虽然广泛的研究证实,新形成的间相可显著提高离子电导率,但其定量贡献在任何复合电解质中仍未得到实验验证。这种知识差距缺乏设计商业上可行的固体电解质的关键指导方针,从而阻碍了固态电池的发展。一个关键的挑战来自复合电解质中使用的传统低维填料,这些填料倾向于聚集形成不均匀的相间分布,从而使关键载流子输运参数的确定复杂化。为了解决这一问题,我们制作了三维Li6.4Al0.1La3Zr1.7Ta0.3O12自支撑多孔骨架作为填料,其中1,3 -二氧索烷原位聚合建立了复合模型体系。利用先进的表征技术,我们确定了控制载流子输运的几何参数,并建立了相应的模型来估计相间电导率。值得注意的是,间相的室温电导率为2.5 mS cm - 1,比本体复合电解质高33倍。我们将这种增强归因于路易斯酸碱相互作用,该相互作用增加了界面的引发剂浓度,产生了具有扩大自由体积的短链界面聚(1,3 -二恶烷),用于快速锂离子传导。通过应用这一机制的理解,并在Li6.4Al0.1La3Zr1.7Ta0.3O12骨架上涂上更强的刘易斯碱(Li6PS5Cl),我们进一步优化了间相电导率至12 mS cm−1。复合电解质的适用性在硫和LiNi0.8Co0.1Mn0.1O2阴极与锂金属阳极成对的高能固态电池中得到了证明。本研究建立了聚合物/陶瓷复合电解质高导电性界面工程的基本设计原则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantification and Optimization of Interfacial Ion Transport in Polymer/Ceramic Composite Electrolytes for Solid‐State Batteries
Solid polymer/ceramic composite electrolytes have emerged as promising candidates for solid‐state batteries owing to their superior mechano‐chemical compatibility, oxidation stability, and high ionic conductivity. While extensive studies confirm that the newly formed interphase critically enhances ionic conductivity, its quantitative contribution remains experimentally unverified for any composite electrolyte. This knowledge gap lacks a key guideline for designing commercially viable solid electrolytes thereby hinders the development of solid‐state batteries. A key challenge arises from the conventional low‐dimensional fillers used in the composite electrolytes that tend to aggregate to create non‐uniform interphase distribution thus complicating the determination of critical carrier transport parameters. To address this, we fabricate three‐dimensional Li6.4Al0.1La3Zr1.7Ta0.3O12 self‐supported porous skeletons as fillers, in which 1,3‐dioxolane is in situ polymerized to establish a composite model system. Using advanced characterization techniques, we determine the geometric parameters governing carrier transport and develop a corresponding model to estimate interphase conductivity. Remarkably, the interphase exhibits a room‐temperature conductivity of 2.5 mS cm−1, 33‐fold higher than that of the bulk composite electrolyte. We attribute this enhancement to Lewis acid–base interactions that increase initiator concentration at the interphase, producing short‐chain interfacial poly(1,3‐dioxolane) with enlarged free volume for rapid Li‐ion conduction. By applying this mechanistic understanding and coating the Li6.4Al0.1La3Zr1.7Ta0.3O12 skeleton with a stronger Lewis base (Li6PS5Cl), we further optimize interphase conductivity to 12 mS cm−1. The applicability of the composite electrolytes is demonstrated in high‐energy solid‐state batteries with both sulfur and LiNi0.8Co0.1Mn0.1O2 cathodes paired with lithium metal anodes. This work establishes fundamental design principles for engineering high‐conductivity interphases in polymer/ceramic composite electrolytes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信