分布式时变优化的事件触发控制。

IF 6.5
Haojin Li, Xiaodong Cheng, Peter van Heijster, Sitian Qin
{"title":"分布式时变优化的事件触发控制。","authors":"Haojin Li, Xiaodong Cheng, Peter van Heijster, Sitian Qin","doi":"10.1016/j.isatra.2025.09.025","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we propose a novel event-triggered (ET) distributed neurodynamic (DND) approach that integrates a distributed controller to tackle distributed time-varying optimization problems (DTOP). The approach achieves optimization of a global cost function in real time while simultaneously steering agent states toward consensus. Two key features distinguish the proposed method from prior works. First, communication among agents is governed by ET schemes, allowing updates only at specific triggering moments, which helps conserve communication energy. Second, the ET distributed controller eliminates the computation of the inverse of the Hessian matrix of the local objective function, which effectively reduces the computational cost. Finally, a case study of the battery charging problem demonstrates the effectiveness of the proposed approach.</p>","PeriodicalId":94059,"journal":{"name":"ISA transactions","volume":" ","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Event-triggered control for distributed time-varying optimization.\",\"authors\":\"Haojin Li, Xiaodong Cheng, Peter van Heijster, Sitian Qin\",\"doi\":\"10.1016/j.isatra.2025.09.025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, we propose a novel event-triggered (ET) distributed neurodynamic (DND) approach that integrates a distributed controller to tackle distributed time-varying optimization problems (DTOP). The approach achieves optimization of a global cost function in real time while simultaneously steering agent states toward consensus. Two key features distinguish the proposed method from prior works. First, communication among agents is governed by ET schemes, allowing updates only at specific triggering moments, which helps conserve communication energy. Second, the ET distributed controller eliminates the computation of the inverse of the Hessian matrix of the local objective function, which effectively reduces the computational cost. Finally, a case study of the battery charging problem demonstrates the effectiveness of the proposed approach.</p>\",\"PeriodicalId\":94059,\"journal\":{\"name\":\"ISA transactions\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISA transactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.isatra.2025.09.025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.isatra.2025.09.025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出一种新的事件触发(ET)分布式神经动力学(DND)方法,该方法集成了分布式控制器来解决分布式时变优化问题(DTOP)。该方法实现了全局成本函数的实时优化,同时使智能体状态趋于一致。该方法与之前的研究有两个关键特点。首先,agent之间的通信由ET方案控制,只允许在特定的触发时刻进行更新,这有助于节省通信能量。其次,ET分布式控制器消除了局部目标函数Hessian矩阵逆的计算,有效降低了计算成本。最后,以电池充电问题为例,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Event-triggered control for distributed time-varying optimization.

In this paper, we propose a novel event-triggered (ET) distributed neurodynamic (DND) approach that integrates a distributed controller to tackle distributed time-varying optimization problems (DTOP). The approach achieves optimization of a global cost function in real time while simultaneously steering agent states toward consensus. Two key features distinguish the proposed method from prior works. First, communication among agents is governed by ET schemes, allowing updates only at specific triggering moments, which helps conserve communication energy. Second, the ET distributed controller eliminates the computation of the inverse of the Hessian matrix of the local objective function, which effectively reduces the computational cost. Finally, a case study of the battery charging problem demonstrates the effectiveness of the proposed approach.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信